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Preface 

The core content of this book was written 20 years ago, when I began giving my 
first courses on structural equation modeling at the François Rabelais University in 
Tours, France. Having never been left pending, the manuscript has been constantly 
updated for the needs of my university courses and numerous introductory 
workshops to SEM that I was conducting in various foreign universities. These 
courses and workshops were both an introduction to the statistical tool and an 
adoption of a software without which this tool would be obscure, abstract and 
disembodied. To put it directly and bluntly, any introduction to structural equation 
modeling (SEM) compulsorily includes adopting a SEM software. Among LISREL, 
Amos, EQS, Mplus Sepath/Statistica, and Calis/SAS, there is no dearth of options. 
These commercial programs no doubt helped in demystifying structural equation 
modeling and have thus given it an actual popularity that continues to grow.  

Writing a book, in this case a practical handbook of structural equation modeling, 
requires introducing one or more of these commercial software that are admittedly quite 
expensive. That is where the problem lies. Not that they do not deserve it, but picking 
one is inevitably advertising that software. I cannot and will not consent to this. 
Moreover, access to these commercial software remains, for many students and young 
researchers, an obstacle and constraint that is often insurmountable. I have often 
experienced the challenge of teaching SEM in African universities where it was 
impossible to have SEM commercial software. I happened to use a restricted student 
version of a commercial program to demonstrate in my class. 

When R, free open-source software, was developed, the situation changed. R is 
made of packages dedicated to all kinds of data analysis and processing. The lavaan 
package, provided by Rosseel [ROS 12], is dedicated to SEM. It achieved immediate 
success as it has all the features proposed by commercial software, and it offers such  
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a disconcerting ease of use. As with any statistical tool, practice remains the best 
way to master SEM. There is no better way to do this than by having software at 
hand. R and lavaan have changed our way of teaching statistical tools as well as the 
way in which students can become familiarized with, adapt, and use them. Our level 
of demand on them changes as the students' view of these tools evolves. 
Understanding, learning, and especially practicing without any limits (apart from 
that of having a computer): this is what R and its lavaan package offer to students. 
This book certainly contributes to it. 

Without the impetus and the decisive and meaningful contribution of Guillaume 
Broc, author of the book Stats faciles avec R (De Boeck), this manual would not 
have seen the light of day. We share the following belief: access to science and its 
tools must become popular and be available to everyone. We think that this manual, 
devoted to structural equation modeling with lavaan, fully contributes to this 
purpose. 

It is because this book aims to be a didactic handbook and a practical 
introduction to SEM meant for students and users who do not necessarily need 
complex mathematical formulae to adopt this tool and be able to use it wisely, that 
we submitted the first draft to some novice students in SEM in order to assess its 
clarity and comprehensibility. Their careful reading and their judicious and pertinent 
comments allowed for a substantial improvement of this manual. They are very much 
thanked for this. In fact, they are fully involved in this project. However, we retain and 
accept full responsibility for mistakes, shortcomings, or inadequacies that may be present 
in this manual. 

Kamel GANA 
October 2018 

 
 
 



 

Introduction 

“The time of disjointed and mobile hypotheses is long  
past, as is the time of isolated and curious experiments.  

From now on, the hypothesis is synthesis.” 

Gaston Bachelard  
Le Nouvel Esprit scientifique, 1934 

 
“There is science only when there is measurement.” 

Henri Piéron, 1975 

Predicting and explaining phenomena based on non-experimental observations is 
a major methodological and epistemological challenge for social sciences. Going 
from a purely descriptive approach to an explanatory approach requires a suitable, 
sound theoretical corpus as well as appropriate methodological and statistical tools. 
“It is because it is part of an already outlined perspective that structural equation 
modeling constitutes an important step in the methodological and epistemological 
evolution of psychology, and not just one of the all too frequent fads in the history 
of our discipline”, wrote Reuchlin ([REU 95] p. 212). The point aptly described by 
Reuchlin applies to several other disciplines in the human and social sciences. 

Since its beginning, there have been two types of major actors who have worked 
with structural equation modeling (SEM), sometimes in parallel to its development: 
those who were/are in a process of demanding, thorough, and innovative application 
of the method to their field of study, and those who were/are in a process of 
development and refinement of the method itself. The second group is usually 
comprised of statisticians (mathematicians, psychology psychostatisticians, etc.), 
whereas the first group is usually comprised of data analysts. While willingly 
categorizing themselves as data analysts, the authors of this book recognize the 
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importance of the statistical prerequisites necessary for the demanding and efficient 
use of any data analysis tool. 

This manual is a didactic book presenting the basics of a technique for beginners 
who wish to gradually learn structural equation modeling and make use of its 
flexibility, opportunities, and upgrades and extenxions. And it is by putting 
ourselves in the shoes of a user with a limited statistical background that we have 
undertaken this task. We also thought of those who are angry with statistics, and 
who, more than others, might be swayed by the beautiful diagrams and goodness-of-
fit indices that abound in the world of SEM. We would be proud if they considered 
the undoubtedly partial introduction to SEM we give here as insufficient. As for 
those who find the use of mathematics in humain and social sciences unappealing, 
those who have never been convinced by the utility of quantitative methods in these 
sciences, it is likely that, no matter what we do, they will remain so forever. This 
manual will not concern them… It is hardly useful to focus on the fact that using 
these methods does not mean conceiving the social world or psychological 
phenomena as necessarily computable and mathematically formalizable systems. 
Such a debate has lost many a time to the epistemological and methodological 
evolution of these sciences. This debate is pointless… 

In fact, computer software has made it possible to present a quantitative method 
in a reasonably light way in mathematical formulas and details. Currently, it is no 
longer justifiable to present statistical analysis pushed up to its concrete calculation 
mode, like when these calculations were by hand in the worst cases or done with the 
help of a simple calculator in the best cases. But the risk of almost mechanically 
using such programs, which often gives users the impression they are exempted 
from knowing the basics of technical methods and tests that they use, is quite real. 

We have tried to limit this risk by avoiding making this book a simple SEM software 
user's guide. While recognizing the importance of prerequisite statistics essential to a 
demanding and efficient use of any data analysis tool, we reassure readers: less is more. 
Let us be clear from the outset that our point of view in this book is both methodological 
and practical and that we do not claim to offer a compendium of procedures for detailed 
calculations of SEM. We have put ourselves in the shoes of the user wishing to easily 
find in it both a technical introduction and a practical introduction, oriented towards the 
use of SEM. It is not a “recipe” book for using SEM that leads to results that are not 
sufficiently accurate and supported. Implementing it is difficult, as it also involves 
handling SEM software, thus following the logic of a user’s guide. 

In the first chapter following this introduction, the founding and fundamental 
concepts are introduced and the principle and basic conventions are presented and 
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illustrated with simple examples. The nature of the approach is clearly explained. It is a 
confirmatory approach: first, the model is specified, and then tested. Handling the  
easy-to-learn lavaan software constitutes the content of the second chapter. Developed 
by Rosseel [ROS 12], the open-source lavaan package has all of the main features of 
commercial SEM software, despite it being relatively new (it is still in its beta version, 
meaning that is still in the test and construction phase). It has a remarkable ease of use. 

Chapter 3 of this manual presents the main steps involved in putting a structural 
equation model to the test. Structural equation modeling is addressed both from the point 
of view of its process, that is, the different steps in its use, as well as from the point of 
view of its product, that is, the results it generates and their reading. Also, different 
structural equation models are presented and illustrated with the lavaan syntax and 
evaluation of the output: path models analysis and the Actor-Partner Interdependence 
Model (APIM). Similarly, the two constituent parts of a structural general equation 
model are detailed: the measurement model and the structural model. Here again, 
illustrations using the lavaan syntax and evaluation of the output make it possible for the 
reader to understand both the model and the software. 

Any model is a lie as long as its convergence with the data has not been confirmed. 
But a model that fits the data well does not mean that it represents the truth (or that it is 
the only correct model, see equivalent models); it is simply a good approximation of 
reality, and hence a reasonable explanation of tendencies shown by our data. Allais 
[ALL 54] was right in writing that “for any given level of approximation, the best 
scientific model is the one which is most appropriate [italicized by the author]. In this 
sense, there are as many true theories as given degrees of approximation” (p. 59). 
Whatever it may be, and more than ever, the replication of a model and its  
cross-validation are required. 

The fourth chapter is dedicated to what has been called “the more or less recent 
extensions of SEM”. Here, the term “extensions” means advances and progress, because 
the approach remains the same, regardless of the level of complexity of the specified 
models and the underlying degree of theoretical elaboration. The aim here is to show the 
use of the power and flexibility of SEM through some examples. Its potential is immense 
and its opportunities multiple. Its promises are rich and exciting. However, it was not 
possible to go through them all. It seemed wise to focus on those that are becoming 
unavoidable. Moreover, some analyses have become so common that they could cease to 
be seen as a mere extension of basic equation models. One can think of multigroup  
analyses that offer the possibility to test the invariance of a model through populations, 
thus establishing the validity, or even universality, of the theoretical construct of which it 
is the representation. Latent state-trait models, which refer to a set of models designed 
and intended to examine stability of a construct over time (temporal), are more recent, 
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and it is to them that we have dedicated a chapter that is both technical and practical. 
Finally, latent growth models that find their place in longitudinal, rare, and valuable data 
never cease to be of interest to researchers. Using them with the help of models 
combining covariance structure analysis and mean structure modeling is one of the 
recent advances in SEM. 

We suggest that the reader acquires a progressive, technical introduction to begin 
with by installing the free software lavaan with no further delay. The second chapter 
of this book will help in getting started with this software. It is in the reader’s 
interest  to follow step-by-step the treatment of data in the book in order to replicate 
the models presented, and not move to the next step until they get the same results. 
These data will be available on a website dedicated to this manual. 

We started this introduction by paraphrasing Reuchlin, We would like to 
conclude our introduction citing Reuchlin once again when he accurately said that 
SEM “are tools whose usage is not possible, it is true, unless there is some 
knowledge and some psychological hypotheses about the functioning of the 
behaviors being studied. It would be paradoxical for psychologists to consider this 
constraint as a disadvantage” [REU 95]. One could even say that they would be 
wrong to consider it in this way. And Hair, Babin, and Krey [HAI 17], marketing 
and advertising specialists, would agree with Reuchlin. In fact, in a recent literature 
review examining the use of SEM in articles published in the Journal of Advertising 
since its first issue in 1972, these authors acknowledge that the attractiveness of 
structural equation modeling among researchers and advertisers can be attributed to 
the fact that the method is proving to be an excellent tool for testing advertising 
theories, and they admit bluntly that the increasing use of structural equation 
modeling in scientific research in advertising has contributed substantially to 
conceptual, empirical, and methodological advances in the science of advertising. 

Is it not an epistemological evolution necessary to any science worthy of the 
name to go from the descriptive to the explanatory? This is obviously valid for a 
multitude of disciplines where SEM is already used: agronomy, ecology, economy, 
management, psycho-epidemiology, education sciences, sociology, etc.  
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Structural Equation Modeling 

Structural Equation Modeling (SEM) is a comprehensive and flexible approach 
that consists of studying, in a hypothetical model, the relationships between 
variables, whether they are measured or latent, meaning not directly observable, like 
any psychological construct (for example, intelligence, satisfaction, hope, trust1). 
Comprehensive, because it is a multivariate analysis method that combines the 
inputs from factor analysis and that of methods based or derived from multiple 
regression analysis methods and canonical analysis [BAG 81, KNA 78]. Flexible, 
because it is a technique that allows not only to identify the direct and indirect 
effects between variables, but also to estimate the parameters of varied and complex 
models including latent variable means. 

Mainly of a correlational nature, structural models are both linear statistical 
models, whose normal distribution of variables is almost necessary, and statistical 
models in the sense that the error terms are considered to be partly related to the 
endogenous variables (meaning predicted). We say almost necessary because the 
success of structural equation modeling is such that its application extends, certainly 
with risks of error, to data obtained through categorical variables (ordinal or even 
dichotomous) and/or by clearly violating the multivariate normal distribution. 
Considerable mathematical advances (like the so-called “robust” estimation 
methods) have helped currently minimize these risks by providing some remedies to 
the non-normality of the distribution of variables and the use of data collected by the 
means of measurement scales other than that normally required for  
structural equation models, namely interval scales [YUA 00]. We will discuss more 
on that later. 

                            
1 See Ramirez, David and Brusco [RAM 13] for the main constructs used on marketing 
science. 

Structural Equation Modeling with lavaan,  

First Edition. Kamel Gana and Guillaume Broc. 

© ISTE Ltd 2019. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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Our first goal is to introduce the reader to the use of structural equation models 
and understand their underlying logic; we will not delve too much into mathematical 
and technical details. Here, we will restrict ourselves to introducing, by way of a 
reminder, the concepts of correlation, multiple regression, and factor analysis, of 
which structural equation modeling is both a summary and a generalization. We will 
provide to the reader some details about the concept of normality of distribution, 
meaning with linearity, a basic postulate of structural equation modeling. The reader 
will find the mathematical details concerning the basic concepts briefly recalled here 
in any basic statistical manual. 

1.1. Basic concepts 

1.1.1. Covariance and bivariate correlation 

Both covariance and correlation measure the linear relationship between two 
variables. For example, they make it possible to learn about the relationship between two 
items of a test or a measure (e.g., a questionnaire) scale. Figure 1.1 provides a graphic 
illustration of the same. 

 

Figure 1.1. Covariance/correlation between two variables 
(the small curved left-right arrow indicates the variance) 

Covariance, which measures the variance of a variable with respect to another 
(covariance), is obtained as follows: ܿݒ݋௑௒ = ∑(௑ିெ೉)(௒ିெೊ)ேିଵ   [1.1] 

where: 

– M = mean; 

– N = sample size. 

X Y 

covXY 
rXY 
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Being the dispersion around the mean, the variance is obtained as follows: ݎܽݒ = ∑(௑ିெ)²ேିଵ   [1.2] 

The values of a covariance have no limits. Only, it should be noted that the 
positive values of covariance indicate that values greater than the mean of a variable 
are associated with values greater than the mean of the other variable and the values 
lesser than the mean are associated in a similar way. Negative covariance values 
indicate values greater than the mean of a variable are associated with values lesser 
than the mean of the other variable. 

Unlike covariance, correlation measures such a relationship after changing the 
original units of measurement of variables. This change, called “standardization” or 
“normalization”, involves centering-reducing (i.e. M = 0.00, standard deviation = 
1.00) a variable (X) by transforming its raw score into z score: ݖ௑ = ௑ିெఙ   [1.3] 

where: 

– M = mean of X; 

– σ = standard deviation of X. 

The standard deviation is simply the square root of the variance: 

σ = √[1.4] ݎܽݒ 

 = ට∑(௑ିெ)²ேିଵ    

Remember that standard deviation is the index of dispersion around the mean 
expressing the lesser or higher heterogeneity of the data. Although standard deviation 
may not give details about the value of scores, it is expressed in the same unit as these. 
Thus, if the distribution concerns age in years, the standard deviation will also be 
expressed in the number of years. 

The correlation between standardized variables X and Y (ZX and ZY, [1.3]) is 
obtained as follows: ݎ௑௒ = ∑(௓೉)(௓ೊ)ேିଵ   [1.5] 
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Easier to interpret than covariance, correlation, represented, among others, by the 
Bravais-Pearson coefficient r, makes it possible to estimate the magnitude of the linear 
relationship between two variables. This relationship tells us what information of the 
values of a variable (X) provides information on the corresponding values of the other 
variable (Y). For example, when X takes larger and larger values, what does Y do? We 
can distinguish between the two levels of responses. First, the direction of the 
relationship: when the variable X increases, if the associated values of the variable Y tend 
overall to increase, the correlation is said to be positive. On the other hand, when X 
increases, if the associated values of Y overall tend to reduce, the correlation is called 
negative. Second, the strength of the association: if information of X accurately 
determines information of Y, the correlation is perfect. It corresponds respectively to + 1 
or – 1 in our demonstration. In this case, participants have a completely identical way of 
responding to two variables. If information of X does not give any indication about 
values assumed to be associated with Y, there is complete independence between the two 
variables. The correlation is then said to be null. Thus, the correlation coefficient varies 
in absolute value between 0.00 and 1.00. The more it is closer to + 1.00 or – 1.00, the 
more it indicates the presence of a linear relationship, which can be represented by a 
straight line in the form of a diagonal2. On the other hand, more the coefficient goes to 0, 
the more it indicates the lack of a linear relationship. A correlation is considered as being 
significant when there is a small probability (preferably less than 5%) so that the 
relationship between the two variables is due to chance. 

As much as the covariance matrix contains information about the relationships 
between the two measures (scores) and their variability within a given sample, it 
does not allow for comparing, unlike a correlation matrix, the strength of the 
relationships between the pairs of variables. The difference between these two 
statistics is not trivial as the discussions on the consequences of the use of one or the 
other on the results of the analysis of structural equation models are to be taken 
seriously. We will discuss this further. 

Furthermore, it is worth remembering that there are other types of correlation 
coefficients than the one that we just saw. In structural equation modeling, the use of 
tetrachoric and polychoric correlation coefficients is widespread, as they are suitable for 
measurements other than those of interval-levels. The first is used to estimate the 
association between two variables, called “dichotomous”; the second is used when there 
are two ordinal-level variables.  

                            
2 The correlation is higher than the points tend to lie on the same straight line. Note that each 
point represents the correspondence, for example, between the scores of an individual to two 
items. 
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1.1.2. Partial correlation 

The correspondence between two variables may result from various conditions that 
the calculation of correlation cannot always detect. Thus, assuming that only the well-
off have the financial means to buy chocolate in a given country, even a very strong 
correlation observed between the two variables – “consumption of chocolate” and “life 
satisfaction” – in older people does not mean that the first is the cause of the second. 
First, we are right in thinking of the opposite, as a statistic expressed by a correlation 
can be read in two ways. In addition, we can think that these assumptions are all 
erroneous, and that it would perhaps come from a common cause, the “milieu” that 
similarly determines the two variables, which, due to this fact, prove to be correlated. 
In this case, life satisfaction in a category of the elderly does not come from 
consuming chocolate, but from the preferred milieu in which they live; it is this milieu 
that allows them to both consume chocolate and be happy. Here, we see a spurious 
(artificial) relationship that we will shed light on through the following illustration. Let 
us consider that the correlation matrix between these three variables measured from a 
sample of elderly people (Table 1.1).  

Variable X Y Z 

X. Chocolate consumption 1.00   

Y.  Life satisfaction  .49 1.00  

Z. Milieu  .79 .59 1.00 

Table 1.1. Correlation matrix (N = 101) 

The use of partial correlations is useful here, as it will allow us to estimate the 
relationship between X and Y controlling for Z that will be hold constant. This 
correlation is written in this way, rXY.Z, and is calculated as follows: ݎ௑௒.௓ = ௥೉ೊି(௥೉ೋ)(௥ೊೋ)ට(ଵି௥೉ೋమ )(ଵି௥ೊೋమ )  [1.6] 

Considering the numerator of this equation, we can observe how the “milieu” 
variable (Z) was hold constant: we simply removed the two remaining relationships 
from the relationship between “chocolate consumption” (X) and “life satisfaction” 
(Y), namely (rXZ) and (rYZ). If we apply this formula to the data available in the  
 



6     Structural Equation Modeling with lavaan 

matrix [1.7], the partial correlation between X and Y by controlling Z will be as 
follows: 

rXY.Z = [0.49 − (0.79)(0.59)] / [ඥ(1 − 0.79²) (1 − 0.59²) [1.7] 

 = [(0.49 − 0.46)] / [ඥ(0.37)(0.65)] 
 = 0.03/0.49  

= 0.06 

We realize that by controlling for the variable “milieu”, the relationship between 
“chocolate consumption” and “life satisfaction” fades, as it is likely an artificial one. 
The milieu takes the place of confounding factor, giving the relationship between 
“chocolate consumption” and “life satisfaction” an artificial nature, meaning 
spurious. 

To conclude, we put emphasis on the fact that it is often unwise to interpret the 
correlation or partial correlation in terms of causality. Mathematics cannot tell us about 
the nature of the relationship between two variables. It can only tell us to what extent 
the latter tend to vary simultaneously. In addition, the amplitude of a link between two 
variables may be affected by, among other things, the nature of this relationship (i.e. 
linear or non-linear), the normality of their distribution, and psychometric qualities 
(reliability, validity) of their measures. 

As for the causality, it requires three criteria (or conditions): 1) the association rule, 
that is the two variables must be statistically associated; 2) the causal order between 
variables, the (quite often) temporal order where the cause precedes the effect must be 
determined without ambiguity and definitely with theoretical reasons that allow for 
assuming the order; 3) the non-artificiality rule, in which the association between the 
two variables must not disappear when we remove the effects of variables that precede 
them in the causal order. This requires that, in the explanation of the criterion, the 
intermediary variable gives an additional contribution compared to the latter. 

It is clear that only experimentation is able to satisfy these three criteria, within the 
limits of what is possible and thinkable. It goes without saying that no statistical 
procedure (analysis of variance, regression, path analysis), as sophisticated and clever as 
it may be, allows for establishing any causal order between variables. We could at most 
make dynamic predictions in longitudinal research [MCA 14]. In Pearl [PEA 98], we can 
find an original and detailed analysis of causality in SEM, and in Bollen and Pearl  
[BOL 13], there is a clarification of the myths about causality in SEM. 
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1.1.3. Linear regression analysis 

Whether single or multiple, regression has a predictive and “explanatory” function. 
When studying relationships, it is true that we are right in predicting one of the variables 
from our knowledge of the other variable(s). We can also seek to determine the relative 
influence of each predictor variable. It is rather this “explanatory” aspect of regression 
that is best suited to structural equation modeling. Regression is in fact a linear 
mathematical model linking a criterion variable (to be explained) to one or more 
explanatory variables, a model mainly built to predict the criterion variable. 

Regression is called “simple” when the model, very rarely, has only one predictor 
variable. Figure 1.2 represents such a model where X is the predictor variable, 
considered as a predictor of the criterion variable, or criterion, Y. B (β) is the 
regression coefficient, which can be either non-standardized (B) or standardized (β), 
while (e) refers to the prediction error (residual), the part of variance that is 
unexplained and probably due to variables ignored by the model. Regression analysis 
aims to estimate the value of this coefficient and establish the part of the error in the 
variance of the criterion. In other words, Figure 1.2 shows Y as subject to the “effects” 
of X and as well as the error term (e). 

 

Figure 1.2. Model of a simple linear regression 
(the curved left-right arrow indicates the variance) 

The model is then written as follows: 

Y = α + βX + e  [1.8] 

This is a regression equation describing the structural relationship between the 
two variables (X and Y) where α refers to Y-intercept. The estimate of the coefficient 
B (β) is solved using the OLS method that involves finding the values that minimize 
the sum of squares of the difference between the observed values and the values 
predicted by the linear function (we will come back to this when we discuss 
discrepancy functions and estimation methods).  
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It also allows to optimize the correlation between these two variables, considered 
as multiple correlation (R) and whose square (R²) shows the proportion of variance 
of the criterion variable attributable to the explanatory variable in the case of a 
simple regression, or to all the explanatory (predictor) variables in the case of a 
multiple regression. The R² value is an indicator of the model fit.  

In fact, the model fit is even better when the R² value is close to 1, because it 
indicates that the predictor variables of the model are able to explain most of the 
total variance of the criterion variable (for example, an equal to 0.40 R² means only 
40% of the variance in the criterion variable are explained by the predictor variables 
in the model).  

Here, note that the value of a non-standardized regression coefficient (B), which 
reflects the metric of origin of variables, has no limits, and may thus extend from 
+infinity to -infinity. This is why a high – very high – B value does not imply that X is 
a powerful predictor of Y. The values of a standardized regression coefficient (β) 
ranges from – 1.00 to + 1.00 (although they can sometimes slightly exceed these 
limits). A coefficient β indicates the expected increase of Y in standard deviation units 
while controlling for the other predictors in the model. And as the standard deviation 
of the standardized variables is equal to 1, it is possible to compare their respective β 
coefficients. 

Regression is called “multiple” when the model has at least two predictor variables. 
Figures 1.3 and 1.4 show two multiple regression models. It should be noted that the 
only difference between them lies in the nature, whether of independence, of the 
predictor variables. They are supposed to be orthogonal (independent or uncorrelated) in 
the first figure, and oblique (correlated to each other) in the second.  

In the first case, the regression coefficient is equivalent to the correlation between the 
explanatory variable (X) and the criterion (Y). The second case shows the interest in 
multiple regression, that of making it possible to distinguish different sources of variance 
of the criterion variable. Thus, the coefficient obtained here is a regression coefficient 
that expresses an effect completely independent of all the other effects in the model, 
giving us information about the correlation between each of the explanatory variables 
and the criterion as well as about the importance of intercorrelations between all of them. 

As can be seen by analyzing the matrix shown in Table 1.1, to estimate figures 
1.3 and 1.4 by using the maximum likelihood estimation here – we will discuss this 
later – the coefficients β on the graph of the first correspond exactly to the 
correlations between the variables of the model; while those shown in Figure 1.4 are 
more like partial correlations between these same variables, although they are not  
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correlations. In fact, a coefficient of β 0.54 means that Y could increase by 0.54 
deviation for a 1 standard deviation increase of Z, by controlling for X (that is by 
holding X constant).  

 

Figure 1.3. Model of a multiple linear regression (orthogonal predictor/explanatory 
variables) (*coefficient obtained from [1.1]) 

 

Figure 1.4. Model of a multiple linear regression 
(correlated predictor/explanatory variables) 

ଵߚ = ௥ೊ೉ି(௥ೊೋ)(௥೉ೋ)ଵି௥೉ೋమ  = 0.06  [1.9] 

ଶߚ = ௥ೊೋି(௥ೊ೉)(௥ೋ೉)ଵି௥೉ೋమ  = 0.54  [1.10] 

We can thus decompose the variance of Y explained by the regression, that is the 
square of its multiple correlation (R²): 

R² = β1rYX + β2rYZ [1.11] 

= (0.06) (0.49) + (0.54) (0.59)   

= 0.34 

X

Z

Y e

B1 (.49)*

B2 (.59)*

X

Z

Y er

B1 (.06)*

B2 (.54)*

(.79)*
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We can easily recognize the specific part attributable to each explanatory 
variable (X and Z) through the regression coefficient (β) as well as the common part 
shared by these same variables through their correlations. 

However, it is well known that one of the main difficulties of multiple regression 
comes from relationships that may exist between the predictor variables. Researchers 
know nothing about these relationships since the specification of the model consists in 
simply referring to the criterion and the explanatory variables. If these relationships are 
more or less perfect, it is either the total confusion of effects or redundancy that affects 
the results and skews their interpretation (i.e. multicollinearity). 

Furthermore, the additive nature of the regression equation seriously limits the 
possibilities of specifying a model in which relationships between variables can be 
both direct and indirect. Imagine that a researcher has an idea about the relationships 
between these explanatory variables. He can reformulate and arrange them by 
introducing, for example, intermediate explanatory variables in his model that are 
themselves undergoing the effect of other predictor variables that might have an effect 
on the criterion. Such an approach requires two conditions: first, a theoretical 
elaboration for the specified model, and second, an appropriate statistical tool. The 
approach then becomes confirmatory. 

Structural equation modeling, and in this case path analysis, thus provides an answer 
to this second condition. The problem of multicollinearity, which arises when the 
correlations between variables are so high that some mathematical operations become 
impossible, has not been resolved so far. Theoretical conceptualization could, moreover, 
help researchers not introduce two redundant variables in a path model or make them 
indicators (for example, items, measured variables) of a latent variable  if they opt for a 
general structural equation model. It is sometimes necessary to get rid of one of the two 
variables that together show a wide relationship (r > 0.80) or have a correlation 
coefficient higher than the square of the predictor value (R²) relating to the whole of the 
explanatory variables. This explains the interest in factor analysis, which helps not only 
to select the latter (in tracking collinearity), but also to interpret the multiple regressions.  
For the mathematical aspects, the reader can refer to Gendre [GEN 76]; for 
multicollinearity in multiple regression, you can consult, among other things, Mason and 
Perreault [MAS 91] or Morrow-Howell [MOR 94]; and for multicollinearity in SEM, we 
suggest you to refer to Grewal, Cote and Baumgartner [GRE 04]. 

1.1.4. Standard error of the estimate 

The standard error of estimate (SE) is a measure of the prediction error. It 
evaluates the accuracy of the prediction. This measure will also be used to test the 
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statistical significance of a parameter estimate (B/β). In other words, is the parameter 
estimate significantly different from zero? Let us take the example of the regression 
coefficient β equal to 0.49 for our sample (N = 101). Is the predictive effect of this 
coefficient obtained from this sample high enough to be able to conclude with a 
reasonable probability of risk that it is not zero at the population level from which 
the sample is taken? To find out, simply divide the regression coefficient (B/β) by its 
SE. This critical ቀ ஻ௌாಳቁ ratio is read as a statistic z whose absolute value, if greater 

than 1.96, means that B(β) is significantly different from zero at p < 0.05, whereas 
an absolute value greater than 2.58 means that B(β) is significantly different from 
zero at  p < 0.01. In the context of a simple linear regression (Figure 1.2), the SE of 
the coefficient B(β) is obtained as follows: 

SEYX =ටேିଵேିଶ ௒² (1ݎܽݒ   − ௒௑ଶݎ )  [1.12] 

where: 

– N = sample size; 

– var = variance. 

Here, we can note the importance of the sample size in calculating the SE. We 
will address this crucial aspect in SEM later. It should also be noted that SE can 
serve as an indicator of multicollinearity. In fact, more the predictor variables (IV) 
are strongly correlated with each other, larger the SE of regression coefficients (thus 
suggesting hardly accurate predictions), and less likely, therefore, their statistical 
significance. The reason is simple: more the IV are highly correlated, more it is 
difficult to determine the variation of the criterion variable for which each IV is 
responsible. For example, if the predictor variables X and Z, of the model shown in 
Figure 1.4, are highly correlated (collinear), it is difficult to determine if X is 
responsible for the variation of Y or if Z is. Therefore, the SE of these variables  
become very large, their effects on Y inaccurate, and so statistically non-significant. 
Finally, we can note that the multicollinearity may generate an improper solution, 
with inadmissible values, such as negative variances. 

1.1.5. Factor analysis 

We purposely keep the factor analysis in the singular – in spite of the diversity of 
methods that it covers – to keep our discussion general in nature. We will elaborate on 
some technical aspects that could enlighten us about the benefits of integrating factor 
analysis into structural equation models later in the book. 
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The key, to begin with, is in the following note. Fundamentally based on 
correlations or covariances between a set of variables, factor analysis is about how 
the latter could be explained by a small number of categories not directly 
observable. They are commonly called “dimensions”, “factors” or even “latent 
variables”, because they are not directly observable. 

To set these ideas down, we will start with a simple example. A total of 
137 participants were given a scale containing five items. To each item making up the 
measure, the participant chooses between five possible responses that correspond to a 
scale ranging from a score of “1” (completely disagree) to “5” (completely agree) 
(Table 1.2). 

Item/indicator 1 2 3 4 5 

In most ways my life is close to my ideal      

The conditions of my life are excellent      

I am satisfied with my life      

So far, I have gotten the important things I want in life      

If I could live my life over, I would change almost nothing      

Table 1.2. A 5-item scale 

The total scores obtained for all of the items allows, for each individual, the 
estimation of the construct rated. A high total score is indicative of the presence or 
the endorsement of the construct measured. This total aggregation offers a 
comprehensive representation of the model [BAG 94]. It suggests, moreover, a 
simple model whose nature it is to restore the essence of the measured construct, on 
condition however that each item is a good indicator. To test this observation, we 
have the factor analysis. The main application of this method is to reduce the 
number of intercorrelated variables in order to detect the structure underlying the 
relationship between these variables. This derived structure, which would be the 
common source of item variance, is called the “common factor”. It is a latent 
hypothetical variable. 

Thus, the covariance (or correlation) matrix constitutes the basic information of 
the factor analysis. For example, what about the correlations between the five items 
of our scale, which are considered as measured variables (also called “manifest 
variables”, “indicators” or “observed variables” of our measure (Table 1.2)? Could  
they be explained by the existence of one or more latent common factor(s)? To  
 



Structural Equation Modeling     13 

know this, this correlation matrix (Table 1.3) is simply subjected to a factor analysis. 
But first, here is a simple illustration of the reasoning behind the extraction of 
common factors. 

1.1.5.1. Extraction of common factors 

To simplify our discussion, take the correlations between the first three items of 
this measure (i.e. measurement tool) scale. Figure 1.5 illustrates the covariations 
between these items as a diagram. The crosshatched part represents the covariance 
shared by the three items. The dotted parts represent the covariations between the item 
pairs. Empty parts represent the variance portion unique to each item. 

 

Figure 1.5. Correlations (covariances) between three items 

Factor extraction procedure allows the identification of the common factor that 
may explain the crosshatched part, that is what these items may have in common. 
This factor can partially, or fully, explain the covariances between the three items. 
Other factors can also be extracted to explain the rest of the covariations outside the 
crosshatched area. The dotted parts could each be explained by a factor. However, 
each of these factors will take into account the covariances between two items only 
and exclude the third. Here, we can note that the common factors extracted do not 
have precise meaning hitherto. Their existence is, at this stage, purely mathematical. 
Then comes the interpretation of the results in order to give meaning to and name 
these factors. Besides, in order to facilitate the interpretation of the extracted factors, 
we often proceed to factorial rotations, whether they are orthogonal or oblique (the 
reader eager to know more can consult, among other things, the book by Comrey 
and Lee [COM 92], or the latest one by Fabrigar and Wegener [FAB 12]). 

The passage of the analysis of correlations between variables to the underlying 
factors requires, in fact, linear combination of these. This combination mathematically 
takes the form of a regression equation, solving which requires complex estimation 
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procedures. For each factor extracted from the factor analysis, each measured variable 
(or item) receives a value that varies between – 1 and + 1, called the “factor loading 
coefficient” (always standardized). The latter defines the importance (i.e. the weight) 
of the factor for this variable. This means that the correlation between each pair of 
variables results from their mutual association with the factor(s). Thus, the partial 
correlation between any pair of variables is assumed to be zero. This local 
independence allows the searching of factors that account for all the relationships 
between the variables. In Reuchlin, we find a very detailed and technical presentation 
on factor analysis methods. 

1.1.5.2. Illustration 

Let us say, for the sake of simplicity, that there is only one factor that would explain 
the observed correlations between the five items of our measure scale (Table 1.3). 
Figure 1.6a illustrates this concept because the absence of such a factor means complete 
independence (orthogonality) of items from each other (Figure 1.6b). 

Variable Item1 Item2 Item3 Item4 Item5 
Item1 1.00     
Item2 .37 1.00    
Item3 .57 .30 1.00   
Item4 .26 .31 .39 1.00  
Item5 .34 .33 .43 .43 1.00 

SD .93 .84 .89 .98 1.27 

Table 1.3. Correlations between the five items of the scale  
shown in Table 1.2 (N = 137) 

 

Figure 1.6. (a) Monofactorial model (one-factor model) of the scale of “life 
satisfaction (LS)”, and (b) null model (also called “independence model” 

or “baseline model”, not to be confused with the null hypothesis) 
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Thus, we assume that the variance of responses to each item is explained by two 
latent factors: one common to all items (factor F), and the other specific to the item 
(factor e). This specific factor is a kind of combination of item-specific variance and 
measurement error. We will first seek to estimate the factorial weight of each item, 
that is the factor loading. In case of an example as simple as ours3, the factor loading 
coefficient is none other than the correlation coefficient linking the factor to the 
measured variable. It also corresponds to the regression coefficient by keeping the 
factor constant. Thus, there are as many regression equations as there are items: 

Item 1 = λ11F1 + e1 

Item 2 = λ21F1 + e2 

Item 3 = λ31F1 + e3 

Item 4 = λ41F1 + e4 

Item 5 = λ51F1 + e5 

In other words, each item undergoes the effect of two latent factors: a common factor 
(F) and a unique factor (e or U) referring to a combination of specific factors and the 
measurement error. It is noteworthy that factor analysis does not provide separate 
estimates of specific variance and measurement error variance. Lambda “λ” designates 
the loading (factor weight) of the variables (λ11, λ21, ..., λp1), represented by the arrow 
pointing from the common factor to the indicator. 

In order to extract factors and solve regression equations, sophisticated parameter 
estimation methods, such as the principal axis method and the maximum likelihood 
estimation method are used. It can be noted here that, contrary to the principal axis 
extraction method, the maximum likelihood method requires a multivariate normal 
distribution of data, and needs to fix a priori the number of factors to be extracted 
(therefore, it is less exploratory than the principal axis method). Determining the number 
of factors to be extracted uses certain criteria, such as the Kaiser or Cattell criteria. It 
should be remembered here that the principal component analysis is not, strictly 
speaking, factor analysis  [FAB 99]. 

The factor analysis will thus generate a matrix of factor loadings (i.e. model-
implied matrix) that best account for the observed correlations between items. 
Table 1.4 summarizes the factor loadings according to the factor extraction method 
used. It should be noted that these coefficients shall be interpreted as standardized 

                            
3 That is in the case of a theoretical model that has no intermediary variable. 
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coefficients (β). When squared, a factor loading coefficient of an item makes it 
possible to give the portion of its variance attributable to the factor on which it 
depends (underlying factor). It is known as the communality (h²) of a variable/item. 
For example, a factor loading of 0.63 squared (0.63² = 0.39) means 39% of variance 
explained by the only common factor in our example4. The rest of the variance  
(1 – 0.39 = 0.61), that is 61%, is attributable to the specific factor to the item  
(e, sometimes designated by U² for uniqueness). So, even if there is no golden rule, a 
factor loading coefficient ≥ 0.40 is considered necessary to judge the quality (validity) 
of an item as an indicator of one factor or another. Some may think that this criterion is 
quite lax since a factor loading of 0.40 means that only 16% of the explained variance 
depends on the factor of which one item is the indicator (see the recommendations of 
[COM 92], or those of [TAB 07] on this subject). 

A careful reading of the five items on the scale suggests that this common factor 
refers to the “life satisfaction” construct. It is in fact the “life satisfaction” scale of 
Diener, Emmons, Larsen, Griffin [DIE 85] and [GRI 85]. 

 Factor loadings 

Variable Principal axis Maximum likelihood 

Item1 .62 .63 

Item2 .52 .51 

Item3 .70 .71 

Item4 .56 .56 

Item5 .63 .63 

Table 1.4. Factor loadings for 5 items depending  
on factor extraction method 

Remember also that these are factor loading coefficients that allow the 
reproducing of the correlation matrix (Σ) (model-implied matrix). In fact, in the case 

                            
4 In the presence of several extracted factors, the commonality of an item is the sum of its 
factor loading squared by each factor. Thus, h² here refers to the portion of variance 
attributable to all the factors generated by the factor analysis. 
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of a monofactorial solution5, the product of two factor loadings allows reproducing 
their correlation. Thus, model-based reproduced correlation between item 1 and 
item 2 is equal to (0.62) (0.52) = 0.32 using the principal axis method, and (0.63) 
(0.51) = 0.32 using the maximum likelihood estimation method. From the observed 
correlations, the reproduced correlations are deduced term by term. Differences, 
whether positive or negative, form the residual correlation matrix. Table 1.5 shows 
the three matrices involved: original (S), reproduced (Σ), and residual (S – Σ). The 
last two matrices are obtained using the maximum likelihood estimation method. 
The same rule applies to other methods. We will come back to this in Chapter 3 of 
this book, when we will deal with confirmatory factor analysis.  

 Reproduced matrix (Σ)  Residual matrix (S - Σ) 

 
Item

 1 
Item 

2 
Item

 3 
Item

 4 
Item

 5 
Item  

1 
Item  

2 
Item  

3 
Item

 4 
Item

 5 

Item 1 _ 3.2 0.45 0.35 0.39 _     

Item 2 0.37 _ 0.36 0.28 0.32 0.05 _    

Item 3 0.57 0.30 _ 0.39 0.44 0.12 – 0.06 _   

Item 4 0.26 0.31 0.39 _ 0.35 – 0.09 0.03 0.00 _  

Item 5 0.34 0.33 0.43 0.43 _ – 0.05 0.01 – 0.01 0.08 _ 

 Observed matrix (S)  

Table 1.5. Correlation matrices (reproduced above diagonal, observed below 
diagonal, as well as residual) of items of the life satisfaction scale; maximum 

likelihood estimation method 

                            
5 Things are obviously more complicated with a multifactorial solution where the correlation 
reproduced between X1 and X2 = ∑m λX1m λX2m (m denotes the number of factors). 



18     Structural Equation Modeling with lavaan 

Mostly exploratory and descriptive6, factor analysis has at least two advantages. First, 
direct use making it possible to: (1) identify groups of correlated variables in order to 
detect the underlying structures – the aim of this method is to determine the organization 
of variables, by identifying those that are similar and those that contrast with each other; 
(2) to reduce the set of variables into a smaller number of factors. In fact, it is reasonable 
to think that the variables that display a high degree of similarity are assumed to 
measure the same construct, the latter being a non-observable theoretical entity called 
“factor”. It is expected to account for the covariations between the measured variables 
by clearing the “belief”, or the “perception”, that underlies them. The “life 
satisfaction” construct is one such example. It is a theoretical construction that is 
assumed to be evaluated by indicators, or measured variables, which are the items. The 
perception that each participant has life satisfaction is estimated by his/her way of 
answering the items, for which correlations are used as an index. Associations – of 
high degrees – between items can be explained by the fact that they involve the same 
perception, or the same core belief. Second, an indirect use helps to process data – 
preparing them – to simplify them and avoid artifacts, such as multicollinearity 
(reflecting a redundancy of variables), that make a matrix ill-conditioned. 

1.1.6. Data distribution normality 

The normality of data distribution is at the heart of structural equation modeling 
because it belongs to linear models. Moreover, LISREL, still used as the generic name of 
this technique (specifically, we still talk of a “Lisrel model” to denote structural models), 
is in fact an abbreviation of LInear Structrural RELationships, the model and first SEM 
program, designed by Jöreskog [JÖR  73, JÖR 73]. 

The statistical tests used by researchers to assess these models are, in fact, based on 
the hypothesis of normal distribution: multivariate normal distribution of data. The 
entire scope of statistical inference depends on it. In order to determine the level of 
significance of the tests obtained, we need a theoretical model, which will tell us the 
probability of an error involved in the acceptance (or rejection) of the relationship 
between two variables depending on the size of our sample. This model is the so-
called mathematical “normal distribution”. Indeed, most statistical procedures used in 
SEM involve the assumption of normality of distribution of observations in their 
derivation. A “univariate normal distribution” is when a single variable follows the  
 

                            
6 The confirmatory nature is hardly absent from factor analysis, as Reuchlin (1964) so aptly 
described, especially with the maximum likelihood estimation method, which is accompanied 
by the statistical test for the fit of the factor solution. 
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normal distribution, and in the “multivariate normal distribution”, a group of variables 
follows the normal distribution. 

Now, some simple questions are raised: what is a normal distribution? How can this 
normality be assessed? What to do in case of violation of this assumption? 

Curved and bell shaped, the normal distribution is defined by two parameters: 
the mean, center of the distribution setting the symmetry of the curve, and deviation, 
whose value affects the appearance of the latter7. It is a unimodal and symmetric 
distribution. Standard normal distribution with a mean of 0.00 and standard 
deviation of 1.00 is its most convenient and simplest form. Such a transformation 
does not affect the relationship between values, and its result is the z-score  
(see [1.3]). 

We can see from a normal curve that a distribution is said to be “normal” when 
95.44% of its observations fall within an interval which corresponds to, and in 
absolute value, twice (or more precisely 1.96 times) the standard deviation from the 
same mean. These are limits within which 95.44% observations are found. As for 
the 4.6% of the observations (2.3% at each end of the curve), they obtain higher  
z-values in absolute value at 2.00 (to be more precise, at 1.96) times the standard 
deviation from the mean. The z-score is of crucial importance in SEM as we will use 
it, through the critical ratio, to test the hypothesis of statistical significance of model 
parameter estimates. We have already seen that an estimated parameter is considered 
significant when it is statistically different from zero. We will thus assess its utility 
and its pertinence in the model. It is important to keep in mind that some estimation 
methods require the hypothesis of multivariate normality. Unbiasedeness, effeciency 
as well as precision of the parameter estimates depend on it. 

A normal empirical distribution is supposed to be superimposed on such a theoretical 
distribution. But there could be questions about the isomorphism of such a distribution 
with reality, about the reasons that make us believe that this distribution is a 
mathematical translation of empirical observations. In reality, there is no distribution that 
fully complies with the normal curve. This way of working may seem reasonable for 
researchers in some cases, and quite questionable in others. But, as nature does not hate 
irregular distributions in the famous words of Thorndike [THO 13], there are many 
phenomena that differ from this mathematical model. However, it is important to specify 
that the distribution of the normal curve constitutes a convenient model that gives a 
technical benchmark following which the empirical results may be assessed. 

 
                            
7 In a normal distribution, the mode and median are the mean. 
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There are several indices that allow for statistically estimating the normal distribution 
of the curve. Among the best known, we name two that provide very useful indications 
in this respect: kurtosis concerning the more or less pointed appearance – or shape – of 
the curve, and skewness (asymmetry) that concerns the deviation from the symmetry of 
the normal distribution. A value significantly different from zero (with a 5% risk of error, 
particularly higher than 3 in absolute value) indicates that the form or the symmetry of 
the curve has not been respected. Regarding Kurtosis, a positive value signifies, in this 
case, that the distribution curve is sharper (called “leptokurtic”). In the case of a 
measurement tool (e.g. test), it means that there are neither very easy items nor very hard 
items, but too many items of average difficulty. On the other hand, a negative value 
suggests that the distribution has a flat shape (platykurtic) that indicates, in case of a test, 
that there are too many very easy items (ceiling effect) and too many very difficult items 
(floor effect). In the case of skewness, when the index is positive, the grouping of values 
is on the left side (too many difficult items). If the index is negative, the grouping is on 
the right side (too many easy items). Thus, a peak with an absolute value higher than 10 
indicates a problematic univariate distribution, while a value higher than 20 indicates a 
significant violation of this distribution (the reader will find illustrated presentations of 
asymmetry and kurtosis in [BRO 16]). 

Here, the question raised is about knowing whether the value of indices is sufficiently 
high to be able to conclude, with reasonable probability, that there is a risk of violating 
the form of the curve. To answer it, it is enough to divide the value of the index by its 
standard error (SE). This critical ratio reads like a z-test, of which an absolute value 
higher than 1.96 means that the index (asymmetry or kurtosis) is significantly different 
from zero to p < 0.05, while an absolute value higher than 2.58 means that it is 
significantly different from zero to p < 0.01. In both cases, it can be concluded that there 
is a violation of form of data distribution. 

But the review of the univariate skewness and kurtosis indices no longer seems 
sufficient to prejudge multivariate distribution. The use of multivariate normality tests, 
like the Mardia [MAR 70] coefficient, now proves necessary and very practical. Let us 
note that a high value at the latter, especially higher than 5 in absolute value, indicates 
a deviation with respect to multivariate normality. This coefficient is available in 
almost all structural equation modeling software; it is often accompanied by its  
z-value, thus making it possible to judge its statistical significance. These SEM 
software have made possible extreme outlier detection, which might be the cause of 
deviations from normality. This makes it possible to identify observations that 
contribute greatly to the value of the Mardia coefficient. But, it is sometimes enough to 
eliminate them to return the normality to the distribution [KOR 14]. 
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But, in the presence of data seriously violating normality, some transformations that 
normalize them could be a remedy. Yet, even though these transformations, in this case 
normalization, are processes that have been well known for long and even have some 
advantages, it is rare to see research in SEM using them (see [MOO 93]). Also, for 
ordinal and categorical scales, the aggregation of items (indicator), especially when there 
are multiple, may sometimes be a remedy to the non-normality of distributions mostly 
because they are many in number. In this case, the analysis no longer concerns all the 
items constituting the measure (total disaggregation), but the item parcels referring to 
subsets of items whose scores have been summed [LIT 02]. This is a total or partial 
aggregation of indicators/items of a measure. The reader will find details of use as well 
as examples of application of this procedure suggested by Bernstein and Teng [BER 89] 
in the works of Bagozzi and his collaborators [BAG 94, BAG 98, ABE 96]. However, 
creating item parcelling requires at least two conditions: the measure has to be one-
dimensional (i.e. a congeneric model) and items constituting each parcel created have to 
be randomly selected. For limits concerning item parcelling, the reader can refer to 
[MAR 13]. 

However, it should be specified that when the treatment of non-normality is not 
conclusive (despite item parcelling), and the deviation with respect to normality 
remains high, it is necessary to consider using the most appropriate statistical 
indicators and estimation methods. We will discuss more on that later. 

1.2. Basic principles of SEM 

Similar to factor analysis, the reproduced matrix is a central element in structural 
equations modeling. To simplify, the crux is in the following clarification: the starting 
point of structural equation modeling also involves comparing the covariance (or 
correlation) matrix of the research data (S) with a covariance matrix that is reproduced 
(Σ) from the theoretical model that the researcher wishes to test (model-implied 
covariance matrix). The theoretical model specified by the represents the null 
hypothesis (H0) as a model assumed plausible. The purpose of this comparison is to 
assess the fit between the observed variables and the selected conceptual model. If the 
reproduced covariance matrix is equal to the observed matrix (Σ = S), it refers to the 
model's fit to the data, or fit between the model tested and observed data. In other 
words, the null hypothesis (H0 : Σ = S) is not rejected and the specified model is 
acceptable. 

Differences between the two matrices are represented in the residual covariance  
(or correlation) matrix, which is obtained by subtracting the value of each element  
of the reproduced matrix from the corresponding element in the observed matrix  
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(S – Σ). The degree of similarity between the two matrices indicates the overall 
degree of the model’s fit to the data. 

The covariance matrix (Σ) is reproduced using the model parameter estimates. 
Estimating involves finding a value for each unknown parameter in the specified 
hypothetical model. But, it goes well beyond this simple objective, as it is important that 
the calculated values allow for reproducing a covariance matrix (∑) that resembles the 
observed covariance matrix (S) as much as possible. It is an iterative procedure whose 
general principle is to start from an initial value (specified for the set or for each 
individual parameter either by the user or automatically by the software) and to refine it 
progressively by successive iterations that stop when no new value for each parameter 
makes it possible any longer to reduce the difference between the observed covariance 
matrix and the reconstituted covariance matrix. These different operations are performed 
by algorithms for minimization (discrepancy functions or minimization functions, Fmin) 
that, despite having the same purpose of finding the best parameter estimates, 
nevertheless differ from the mathematical function used for it, that is for minimizing the 
discrepancy between the observed covariance matrix and the reproduced covariance 
matrix. 

In order to illustrate this point, we will go back to the matrix in Table 1.1, and 
propose another model for it. Shown in Figure 1.7a, this model has the advantage of 
being simple: it has two parameters to be estimated, namely P1 and P2. These are two 
regression coefficients B (β). It is thus easy to test the iterative procedure by 
applying the ordinary least squares (OLS) method, whose purpose is to minimize a 
particular discrepancy function that is defined as the sum of the squares of the 
differences between the observed correlations and the reproduced correlations (∑d²). 
Table 1.6 summarizes the whole iterative method estimation. 

 

Figure 1.7. Equivalent path models (a) and (b)  
linking three observed variables 
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To begin, all estimation methods require that the starting values for all parameters 
to be estimated be specified. Some programs also allow for determining the maximum 
number of iterations allowed, and specifying a convergence condition that, once met, 
causes the iterative procedure to stop. 

To carry out the first iteration, we have arbitrarily assigned a value of 0.50 to 
each of the two parameters P1 and P2 of the model. These values allow us to first 
reproduce a correlation matrix: rXZ = 0.50, rYZ = 0.50, and rXY = 0.25. If we now 
apply the OLS method, we then get the next discrepancy function, Fmin = (0.79 – 
0.50)² + (0.59 – 0.50)² + (0.49 – 0.25)² = 0.149 (Table 1.6). 

The smaller the value of this function, the better the fit between the observed 
covariance matrix and the reproduced covariance matrix. Moreover, this value 
becomes equal to zero when parameter estimations allow for perfectly reproducing 
the observed matrix. 

Thus, the initial values will be systematically changed from one iteration to another 
up to the moment when the iterative process will end, that is when no new value is 
able to improve the discrepancy function. 

For example, changes introduced in steps 1a, 1b, and 1c of Table 1.6 aim to 
determine the effect that they can have on the discrepancy function (Fmin). It is shown 
that the simultaneous reduction of the P1 and P2 values deteriorates this function (see 
cycle 1a with respect to cycle 1).  An alternative fall of these values confirms this 
tendency (see cycles 1b and 1c with respect to cycle 1). Subsequent steps aim to 
reverse the first trend. It remains to be determined how much the P1 and P2 can 
increase. It is clear that at this level, a P2 value higher than 0.61 causes an impediment 
to the minimization function (see cycle 3a). On the other hand, progressive increase of 
P1 improves this function. Finally, it can be noted that it is better to stop the process at 
step 4c, as the last step (i.e. step 5) begins deteriorating minimization, which goes from 
0.0006 to 0.0008. And it is by obtaining 0.80 and 0.61 respectively that P1 and P2 
allow for the best minimization. The iteration process can then stop with a discrepancy 
function with a of value Fmin = 0.0006. 

The remaining differences between the observed correlations and the reproduced 
correlations on the basis of the estimated parameters represent elements of the 
residual matrix. Table 1.7 provides reproduced and residual correlation matrices of 
the model in Figure 1.7a, obtained by the OLS method. 
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  Observed correlations 
Discrepanc
y function 

(Fmin) 

 Parameter values rXZ = 0.79 rYZ = 0.59 rXY = 0.49 ∑d² 

Iteration 
cycles P1 P2 Reproduced correlations Least 

squares 

1 0.50 0.50 0.50 0.50 0.250 0.149 

1a 0.49 0.49 0.49 0.49 0.240 0.162 

1b 0.49 0.50 0.49 0.50 0.245 0.158 

1c 0.50 0.49 0.50 0.49 0.245 0.158 

2 0.55 0.55 0.55 0.55 0.300 0.094 

2a 0.60 0.60 0.60 0.60 0.360 0.029 

3 0.65 0.61 0.65 0.61 0.400 0.027 

3a 0.65 0.62 0.65 0.62 0.403 0.028 

4 0.67 0.61 0.67 0.61 0.408 0.021 

4a 0.70 0.61 0.70 0.61 0.427 0.012 

4b 0.75 0.61 0.75 0.61 0.457 0.003 

4c 0.80 0.61 0.80 0.61 0.480 0.0006 

5 0.81 0.61 0.81 0.61 0.494 0.0008 

Table 1.6. Solution of the iterative procedure for the model in Figure 1.7a 

 
Reproduced 

 correlations (Σ) 
Residual 

 correlations (S – Σ) 

 X Y Z X Y Z 

X _ 0.48 0.80 _   

Y 0.49 _ 0.61 0.01 _  

Z 0.79 0.59 _ – 0.01 – 0.02 _ 

 
Observed 

 correlations (S)  

Table 1.7. Original, reproduced, and residual correlation matrices  
of the model in Figure 1.5a, using the OLS estimation method 
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It can be noted that the smallness of the discrepancy between the observed and 
reproduced correlations of three variables (0.01, – 0.01, and – 0.02) proves the 
similarity between the two matrices and consequently, the plausibility of the model. 
Approximation – which can be assessed based on goodness-of-fit indices – seem 
sufficient at first sight to even talk about the fit of the model, in other words the 
adequacy of the theory on which the facts are based. To be convinced of this, let us 
evaluate an alternative model in which the variable X (chocolate consumption) 
influences variables Z (milieu) and Y (life satisfaction). Figure 1.7b shows this model 
and Table 1.8 summarizes the iterative process generated by the OLS estimation 
method.  

  Observed correlations 
Discrepancy 

function 
(Fmin) 

 Parameter values rXZ = 0.79 rYZ = 0.59 rXY = 0.49 ∑d² 
Iteration 

cycles P1 P2 Reproduced correlations Least 
squares 

1 0.50 0.50 0.50 0.50 0.250 0.1998 
1a 0.49 0.49 0.49 0.49 0.240 0.2125 
1b 0.51 0.51 0.51 0.51 0.260 0.1877 
2 0.52 0.52 0.52 0.52 0.270 0.1762 

2a 0.58 0.58 0.58 0.58 0.336 0.1167 
2b 0.60 0.60 0.60 0.60 0.360 0.1011 
2c 0.61 0.61 0.61 0.61 0.372 0.0943 
2d 0.62 0.62 0.62 0.62 0.384 0.0882 
2e 0.63 0.63 0.63 0.63 0.397 0.0824 
2f 0.64 0.64 0.64 0.64 0.409 0.0777 
2g 0.70 0.70 0.70 0.70 0.49 0.0622 
2h 0.80 0.80 0.80 0.80 0.640 0.0996 
3 0.80 0.70 0.80 0.70 0.560 0.0451 

3a 0.85 0.65 0.85 0.65 0.552 0.0328 
3b 0.88 0.60 0.88 0.60 0.528 0.0240 
4 0.89 0.59 0.89 0.59 0.525 0.0242 

4a 0.88 0.59 0.88 0.59 0.519 0.0231 
4b 0.88 0.58 0.88 0.58 0.510 0.0226 
4c 0.88 0.57 0.88 0.57 0.501 0.0224 
4d 0.88 0.56 0.88 0.56 0.492 0.0226 

Table 1.8. Solution of the iterative procedure for the model in Figure 1.7b 
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We remember that the iterative process must end when no new value is able to 
improve the discrepancy function any longer. It should be noted in Table 1.8 that 
after a cycle of improvement of the discrepancy function, the last step 4d spells a 
reversal of the situation. In this case, the estimation procedure should be stopped and 
the result from the previous step 4c should be kept. The discrepancy function thus 
gets a value equal to 0.0224, and parameters P1 and P2 get 0.88 and 0.57 
respectively. 

 
Reproduced 

 correlations (Σ) 
Residual 

 correlations (S – Σ) 

 X Y Z X Y Z 

X _ 0.57 0.88 _   

Y 0.49 _ 0.50 – 0.08 _  

Z 0.79 0.59 _ – 0.09 – 0.09 _ 

 
Observed 

 correlations (S) 
 

Table 1.9. Original, reproduced, and residual correlation  
matrices of the model in Figure 1.5b, using the OLS estimation method 

It is also remembered that the residual matrix provides clues as to whether the 
specified model is able to adequately reproduce the original correlation matrix (or 
variance-covariance matrix). In fact, it makes it possible to know the degree of 
approximation of the observed matrix, the degree of similarity between the latter and 
the reproduced matrix based on the model that we intend to use to describe original 
correlations. It can be noted in Table 1.9 that the discrepancy between the observed 
matrix and the reproduced matrix is such that we are right in thinking it is a model 
totally inconsistent with the data. We will discuss more on that later. 

We have already underlined the fact that, apart from the experimental method, all 
other methods seem unfit to determine a causal link in a strict manner. It is true that 
nothing in a correlation matrix allows for changing the relational nature between the 
variables that it takes into account into a causal nature between them. However, while 
the procedure used to test the theoretical assumptions formalized by figures 1.7a and 
1.7b has actually failed to demonstrate causal links, it showed that these links could now 
not be read equally in one way or the other (see Chapter 5 of this book). It will merely be  
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noted that fit with the facts of a model for the benefit of another has highlighted a certain 
orientation in different connections. It is not absurd to think that, despite their high 
correlation, it is variable Z (in this case, the “milieu”) that has an effect on variable X (in 
this case, “chocolate consumption”), and not the other way around. 

Moreover, the procedure that follows and leads to comparing matrices can be 
surprising. In fact, one observed correlation matrix is compared to a matrix that is 
derived from path coefficients that are themselves based on an estimation from this first 
observed matrix. Sometimes, the correlation coefficient easily reproduces the 
regression coefficient. It is a mathematical tautology that guarantees a perfect 
prediction [JAC 96]. Such a mathematical tautology that renders any comparison 
useless is the prerogative of saturated models (just-identified) that we will discuss 
later. 

In Chapter 3 of this book, we will see how to reproduce a covariance matrix (Σ) 
from the parameters of a simple measurement model (see the topic of confirmatory 
factor analysis in the chapter). In what concerns general structural equation models – 
including latent variables – the derivation of a covariance matrix from the parameters 
of the estimated model is obviously more complicated because of the simultaneous 
presence of the measurement model and the structural model. The reader eager to 
know the details can consult the work of Mueller [MUE 96] among others. 

1.2.1. Estimation methods (estimators) 

As we just saw, the model estimation involves finding a value for each unknown 
(free) parameter in the specified model. But, it goes well beyond this simple objective, 
as it is important that the calculated values allow reproducing a covariance matrix (∑) 
that resembles the observed covariance matrix (S) as much as possible. It is an iterative 
procedure whose general principle is to start from an initial value (specified for the set 
or for each individual parameter either by the user or automatically by the software) 
and to refine it progressively by successive iterations that stop when no new value for 
each parameter makes it possible any longer to reduce the difference between the 
observed covariance matrix and the reproduced covariance matrix. These different 
operations are performed by minimization algorithms (i.e., discrepancy or 
minimization function) that, despite having the same purpose of finding the best 
parameter estimates, nevertheless differ from the mathematical function used for it, 
that is for minimizing the deviation between the observed covariance matrix and the 
reproduced covariance matrix. This often involves complex mathematical functions 
based on matrix algebra (vectors, inverse of a matrix, weighted matrix, determinant,  
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etc.) of a level higher than that desired for this introduction, but whose details could be 
found in any specialized book (for example, see [BOL 89]). Thus, so much more than 
their purely mathematical aspects, what interests us here, in the point of view of the 
user wanting to get unbiased estimates of his/her model’s parameters, is to know the 
considerations that can guide the choice of an estimation method. In fact, since  sample 
parameter estimates are used to infer population parameter estimates, the first must be, 
among other things, unbiased, accurate, and consistent. And estimator is crucial here, 
hence the interest that it can be the object of a deliberate and justified choice, which 
alone will make it possible to retain that which is most appropriate to the data present 
[LAD 89]. Grosso modo, this choice boils down to two options dictated by the type of 
data and, in particular, by the nature of their distribution. The first concerns estimation 
methods that require the hypothesis of multivariate normality of data, while the second 
concerns estimators that are most suitable to data that deviate following the normal 
distribution. The specificities, advantages, and disadvantages of these estimators have 
given rise to fairly abundant and rich work and publications [CHO 95, WES 95]. 

These methods all have the same main objective of rendering, iteratively, 
discrepancy (Fmin) as tiny as possible between two matrices. The value of the function is 
positive, even equal to zero when S = Σ. This means, in this case, that the model is 
perfectly compatible to the data, in other words, H0 : Fmin = 0.00. 

The major difference between these methods lies in the manner in which the 
mathematical discrepancy function (F[S, Σ] = Fmin) is used to minimize deviations 
between the observed correlation matrix (for example, Pearson correlations, 
polychoric correlations, tetrachoric correlations) and the reproduced correlation 
matrix. Once this objective has been met, the statistical significance remains to be 
assessed. To this end, we use the χ² test that is calculated in the following way in 
lavaan: 

χ² = (N)Fmin [1.13] 

where: 

– N is the sample size; 

– Fmin denotes minimum discrepancy (F[S, Σ]) obtained by the estimation 
method used (for example, FML, FGLS, FWLS, which we will discuss later). 

This statistical test allows for judging whether the null hypothesis (H0: S = Σ) is 
admissible, namely that there is no significant difference between the two matrices. 
The χ² value, which tends to increase with the F value, is all the greater because the  
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two matrices compared are dissimilar from one another. A significant (high enough) 
χ² makes it possible to reject the null hypothesis, thus indicating that the specified 
model does not allow for adequately reproducing the observed correlation matrix. 
However, when χ² is equal to zero (or insignificant), namely when the discrepancy  
is zero (F[S, Σ] = 0.00), it means that there is a perfect (or near perfect) fit between 
two matrices. Reading a statistical table of distribution of this index is based on the 
degrees of freedom (df). These are obtained by subtracting the number of parameters 
to be estimated in the model (t) from the number of variances and covariances 
available, that is to say k(k + 1)/2 where k denotes the number of observed variables: 

df = [k (k + 1)/2] – t   [1.14] 

The advantage of χ², which is the only statistical test in SEM, is that it allows for 
proving the statistical significance of the model's fit to the data, under certain 
conditions concerning, in particular, the nature of data distribution and the sample 
size. 

Limits around this test are multiple and now, well known. Apart from its 
sensitivity to sample size (the bigger it is and higher the risk of the model being 
rejected8), the multivariate normal data assumption, which is required for this test. It 
is true that in humanities and social sciences, data that perfectly respects normality is 
rarely available. 

It should also be noted that the sample size directly affects the χ² value. The 
sensitivity of this index to the sample size has raised some well-founded reservations 
that have led to the emergence of other complementary goodness-of-fit indices that 
will be discussed later. As for the choice of one estimation method over another, it is 
an important aspect and we will discuss it later. 

1.2.1.1. Estimators for normally distributed data 

There are two estimators for normally distributed data that are commonly used. 
They are the maximum likelihood method (ML, FML) and the Generalized Least 
Squares (GLS, FGLS). 

With the maximum likelihood method (ML), the discrepancy function (Fmin) 
takes the following formula: 

FML= log|S| – log|Σ| + tr(SΣ– 1) – k  [1.15] 
                            
8 lavaan provides an index called Hoelter's critical N indicating the maximum sample size 
required to accept a model at a given level of probability of χ² (0.05 or 0.01) (see [HU 95], for 
the formula of this index). 
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where: 

– refers to the natural logarithm function (base e); 

– || is the determinant of the matrix; 

– k is the number of variables in the correlation (or covariance) matrix; 

– is the trace matrix algebra function which sums diagonal elements; 

– S = observed matrix; 

– Σ = reproduced matrix; 

– Σ– 1 = inverse of matrix Σ. 

The function used by the Generalized Least Squares (GLS) estimation method is 
written as follows: 

FGLS = 1/2 × tr[S– 1(S – Σ)]² [1.16] 

where: 

– tr = trace of the matrix (or the sum of the diagonal elements of the matrix); 

– S = observed matrix; 

– Σ= reproduced matrix; 

– S– 1 = inverse of matrix S. 

Finally, the third known estimation method, the Weighted Least Squares method 
(WLS, see [BRO 84]), based on the polychoric correlation matrix, is not 
recommended for samples of too small a size. However, unlike the previous ones, 
this method has the advantage of not depending on the form of data distribution. 

1.2.1.2. Which estimators for non-normally distributed data?  

Let us recall that the equivalent of the aforementioned method is also known as 
the Asymptotic Distribution-Free function (FADF), and as the Arbitrary Generalized 
Least Squares (FAGLS) function (i.e. estimator). Much later, we will discuss other 
estimation methods, some of which seem to be more appropriate for ordinal/ 
categorical variables and for data whose distribution deviates from normality. 

The debate on the performance of estimators based on the type of data to be analyzed 
(i.e. continuous variables, ordinal variables, binaries, normality of distribution) is still 
open [LI 16]. In fact, although it is the default estimator in all modeling software 
(including lavaan), the maximum likelihood estimation method  (ML) which requires 
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that variables are continuous and multivariate normal. In humanities and social sciences, 
there are at least two challenges that are faced in using this estimator. First, the 
prevalence of ordinal (for example, Likert-type scale) and dichotomous/binary 
(true/false) outcome measures (indicators). Second, the prevalence of non-normally 
distributed data. From a purist point of view, the maximum likelihood method is not at 
all appropriate for ordinal measurements such as Likert scale items. In fact, it is now 
known that such measurements often display a distribution that deviates from normality 
[MIC 89]. 

Several simulations have shown that the application of the maximum likelihood 
estimation method (or generalized least squares) on data that does not have a normal 
distribution also affects the estimation of standard errors of the parameters than the 
goodness-of-fit statistics: some fit indices are overestimated, and the χ² tends to 
increase as the data gap increases with respect to normality [WES 95]. However, the 
findings of Chou and Bentler [CHO 95] make it possible to qualify these remarks. 
These authors showed that in the presence of a sufficiently large sample, maximum 
likelihood estimation method and generalized least squares method do not make the 
results suffer, even when the multivariate normality is slightly violated (see also 
[BEN 96]). The robustness of these methods is not always guaranteed. In case of a 
more serious violation, several options are available to SEM users [FIN 13]. They 
can be classified into three categories. 

The first groups the family of the maximum likelihood estimation method with 
corrections of normality violations (Robust ML). It concerns new estimation 
methods considered to be more “robust”, as statistics (i.e. standard errors and χ²) 
that they generate are assumed to be reliable, even when distributional assumptions 
are violated. 

The Satorra-Bentler χ² (SBχ²) incorporates a scaling correction for the χ² (called 
scaled χ²). Its equivalent in lavaan is the MLM estimator. 

It is obtained as follows: SBχ² = ୑୐஧²ௗ   [1.17] 

where: 

– d = the correction factor according to the degree of violation of normality; 

– ML = maximum likelihood estimator. 
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In fact, in the absence of any violation of the multivariate normality, SBχ² = 
MLχ². The value of this correction factor (d) is given in the results under the name 
scaling correction factor for the Satorra-Bentler correction. 

The Yuan-Bentler χ² (YBχ²) is a robust ML estimator similar to the 
aforementioned one, but more suited for a small sample size. Its equivalent in lavaan 
is the MLR estimator. The value of the correction factor (d) is provided in results 
under the name scaling correction factor for the Yuan-Bentler correction, allowing 
for calculating the YBχ² as follows: YBχ² = ୑୐஧²ௗ  [1.18] 

The second category groups alternative estimation methods to ML:  

a) first, the weighted least squares method (WLS). This estimator, which 
analyzes the polychoric or polyserial correlation matrix has at least two 
disadvantages. It requires a fairly large sample size [FLO 04] to hopefully get stable 
results (for example, at least 1,200 participants for 28 variables, according to  
[JÖR 89], pp. 2–8, Prelis). And, above all, it quite often runs into convergence 
problems and produces improper solutions where complex models are estimated. A 
negative variance, known as the “Heywood case”, makes the solution improper 
because, as we remember, a variance  can hardly be negative; 

b) the Diagonally Weighted Least Squares (DWLS) method is next. Jöreskog and 
Sörbom [JÖR 89] encouraged using this method when the sample is small and data 
violates normality. This estimator, for which the polychoric or polyserial correlation 
matrix serves as the basis for analysis, is a compromise between the unweighted least 
squares method and the full weighted least squares method [JÖR 89]. Two “robust” 
versions of DWLS that are close to this estimator, called “WLSM” and “WLSMV” in 
lavaan (and Mplus), give corrected estimates improving the solution outcomes 
(standard errors, χ², fit indices described as “robust”). 

These methods use a particular calculation of the weighted matrix as a basis and 
are based on the generalized least squares method. The estimation procedure that 
requires the inversion of the weighted matrix generates calculations that become 
problematic when the number of variables exceeds 20, and require a large sample of 
participants in order to have stable and accurate estimates. Another limitation is the 
requirement to analyze raw data, and therefore have it. 

The third method refers to the resampling procedure (bootstrap). This procedure 
requires neither a normal multivariate distribution nor a large sample (but it is not  
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recommended for dichotomous and ordinal measures with few response categories). 
MacKinnon, Lockwood, and Williams [MAC 04] believe that it produces results (for 
example, standard errors) that are very accurate and reliable.  

The principle of this procedure is simple [MAC 08]. A certain number of samples 
(set by the researcher, e.g. “N bootstrap = 1000”) are generated randomly with 
replacement from the initial sample considered, as the population. Each generated 
sample contains the same number of observations as the initial sample. Then there will 
be as many estimates of the model parameters as there are samples generated. An 
average of estimations of each model parameter is calculated, with a confidence interval 
(CI). An estimate is significant at p < 0.05 if its confidence interval at 95% (95% CI) 
does not include a null value (see [PRE 08a]). The resampling procedure, with lavaan, 
also has the possibility of getting confidence intervals of fit indices. 

Table 1.10 summarizes the recommendations concerning estimators available in 
lavaan based on the type of data to be analyzed. 

Data type and normality assumption Recommended estimator 

 Continuous data  

1- Approximately normal distribution  ML 

2- Violation of normality assumption ML (in case of moderate violation) 

MLM, MLR, Bootstrap 

Ordinal/categorical data  

1- Approximately normal distribution ML (if at least 6 response categories) 

MLM, MLR (if at least 4 response 
categories) 

WLSMV(binary response or 3 response 
categories) 

2- Violation of normality assumption ML (if at least 6 response categories) 

MLM, MLR (if at least 4 response 
categories) 

WLSMV (in case of severe violation) 

Table 1.10. Recommendations concerning the main estimators  
available in lavaan according to the type of data 
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Eventually, the choice of estimation method depends on four criteria: 

– first, the measurement level of data: it seems well established that the most 
appropriate estimator for binary/dichotomous variables is WLS [MUT 93] and its 
recent extension (WLSMV). Following the work of Muthén [MUT 83, MUT 84], it 
quickly became aware of the need to change the approach to the data obtained with 
binary or ordinal scales; 

– data distribution properties, as we saw; 

– available data: raw data or correlation/covariance matrix? Although the covariance 
matrix is the basis of any structural analysis, except the ML method, all other methods 
require using raw data. In the absence of raw data, one can instead use either a 
correlation matrix or a variance-covariance matrix; 

– finally, sample size. This last point deserves attention because it is linked with 
statistical power. 

1.2.1.3. Sample size and statistical power 

By opting for SEM, the researcher must immediately look at the crucial and 
throbbing question of the necessary number of participants to be collected to hope to 
obtain a proper solution, an acceptable level of accuracy and statistical power of 
estimates of his/her model's parameters, as well as reliable goodness-of fit indices. 
Today, specialists are unanimous in considering that structural equation modeling 
requires a lot of participants. Its application to sample sizes that are too small may bias 
the estimates obtained. However, it remains to be seen how many participants are 
needed and sufficient to obtain accurate and reliable estimates. Several general rules 
have been proposed. The first rule is that of a minimum sample of 100 participants as 
per Boomsma [BOO 82, BOO 85], 150 as per Anderson and Gerbing [AND 88] or 
Jaccard and Wan [JAC 96], and 200 as per Kline [KLI 16] for a standard model (a not 
very complex model here). Next is the rule that links the number of participants to the 
number of free parameters (to be estimated) in the model. Bentler [BEN 95], for 
example, recommends five times more participants than free parameters when 
applying the maximum likelihood estimation method or the generalized least squares 
method, and ten times more participants than free parameters when opting for the 
asymptotic Distribution-Free estimation method (ADF) or its equivalents. For Jackson 
[JAC 03], a 20:1 ratio (20 participants for 1 free parameter) will be ideal, while a 10:1 
ratio would be acceptable. This rule takes into account both the complexity of the 
model as well as the requirements of the estimation method. Indeed, it is not 
uncommon to see the asymptotic distribution free estimation fail when applied to a 
sample with few participants. A non-positive definite covariance matrix could be the 
cause after having been the consequence of the small sample size. 
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It is clear that in both rules the characteristics of the model (complex/simple) are a 
decisive factor in determining the minimum required sample size. There are others that 
are just as important: the reliability of indicators of latent variables, the nature of the data 
(categorical, continuous), their distribution, and especially the type of estimator used, 
which we have just mentioned (e.g. ML, MLR, WLSMV). 

Sample size and statistical power are intertwined such that the former determines 
the latter, and so the latter is used to determine the former [KIM 05]. Here, let us recall 
that statistical power refers to the probability of rejecting the null hypothesis (H0) when 
it is false. In SEM, as we have seen, the null hypothesis is represented by the model 
specified by the researcher (i.e. H0: Fmin = 0, i.e. the specified model fits the data 
perfectly). Putting this null hypothetical to test, it is important to know the probability 
of having a good conclusion concerning it (i.e. the probability of accepting a real H0, 
and the probability of rejecting a false H0). The recommended acceptability threshold 
is a power ≥ 0.80, that is the type II error risk should not go above 20% (or 1 – 0.80). 
In other words, an 80% probability to not commit a type II error. This happens when 
the null hypothesis (here, the fit of our model to the data) is accepted by mistake. We 
know that sample size and statistical power are two important levers allowing for 
reducing this error. 

Several strategies have been proposed to solve the question of sample size and 
statistical power required for a given structural equation model. For example, 
Muthén and Muthén [MUT 02b] proposed the use of the rather complicated Monte 
Carlo method. MacCallum, Browne and Sugawara [MAC 96] introduced another, 
more practical type of analysis of statistical power and sample size for structural 
equations models, based on both the fit index, the Root Mean Square Error of 
Approximation (RMSEA) that we will discuss later, and the number of degrees of 
freedom of the specified theoretical model (H0). MacCallum and his collaborators 
[MAC 96] showed the existence of a link between the number of degrees of freedom 
and the minimum sample size to reach the acceptable statistical power (0.80). For 
example, a model showing only 8 df (a not very parsimonious model), needs at least 
954 participants (Nmin = 954) are needed, while only 435 participants are needed for 
a model showing 20 df (so, a more parsimonious model). 

The R “semTools” package has a function (findRMSEAsamplesize) using the 
procedure suggested by MacCallum, Browne, and Cai [MAC 06] making it possible to 
determine the minimum sample size for a statistical specified a priori, based on a 
hypothetical RMSEA value (for example, 0.05). To determine the minimum sample size 
for a model, the reader can also use the calculator offered by Daniel Soper at the 
following address: https://www.danielsoper.com/statcalc/references. aspx?id=89. Based 
on the approach suggested by Westland [WES 10], this calculator allows you to 
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determine the sample size by taking into account the number of observed and latent 
variables in the model, and, a priori, the effect size, the level of probability (typically α ≤ 
0.05), and the desired statistical power (usually ≥ 0.80). The calculator gives both the 
required minimum sample size to detect the specified effect and the minimum sample 
size, taking the complexity of the model into account, in the results. 

Let us conclude here that sample size in SEM is a subject that specialists have 
not finished debating [WES 10, WOL 13], therefore making it impossible to reach a 
consensus on this subject. 

1.3. Model evaluation of the solution of the estimated model 

This step corresponds to examine and read the results of the specified model 
estimation. The confirmatory nature of the approach obviously requires the use of 
goodness-of-fit indices to judge the compatibility between the specified theoretical 
model and the data. The only statistical test is χ² the use of which is, as we have seen, 
limited by its sensitivity to sample size. Moreover, structural equation modeling is 
covered throughout by a paradox: as much as it needs a large sample size, its only 
statistical test is just that sensitive to it; hence adequacy fit indices that are not 
statistical tests are used. We can distinguish two types: overall goodness-of-fit 
indices, which can reject or accept the model applied to the data, and local tests, 
which make it possible to analytically review the solution obtained (i.e. individual 
parameter estimates), ensure that it is a proper solution, and determine the 
significance of the parameter estimates. Let us see them one by one. 

1.3.1. Overall goodness-of-fit indices 

Currently, two dozen are available in all SEM software, including lavaan. But this 
wealth of indices constitutes the difficulty in selecting the most reliable and 
appropriate ones, especially as the growing number of books dedicated to them are 
unanimous neither in their acceptability threshold nor in their meaning and how to 
interpret them [BAR 07, WIL 11]. Several classifications have been proposed to sort 
this out, the most commonly known ones being that of Marsh and his colleagues 
[MAR 88], of Tanaka [TAN 93], and especially that of Hu and Bentler [HU 99], which 
is still authoritative. Thus, and for the sake of simplification, we chose to group them 
into three different categories: absolute fit indices, incremental fit indices, and 
parsimonious fit indices. For each category, we will present the most commonly used 
indices from the recommendations of Hu and Bentler [HU 99], indicating their level of 
acceptability and the interpretation given to them. 
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1.3.1.1. Absolute fit indices 

These indices are based on a comparison between the observed variance-
covariance matrix (S) and the variance-covariance matrix reproduced based on the 
theoretical model (∑). The deviations between homologous elements of these two 
matrices give rise to, as we saw earlier in this chapter, a residual matrix (S – ∑) used to 
calculate the Root Mean Square Residual (RMR) or the Standardized Root Mean 
Square Residual (SRMR). Easier to interpret, standardization makes it possible to 
eliminate the effects of the scale of the variable on the residuals of the model. The 
more the deviations between the elements of S and ∑ are reduced, the lesser the value 
of the RMR or SRMR. This value is obtained by dividing the sum of each element of 
the residual correlation matrix squared by the number of variances and covariances of 
the matrix. The value ranges from 0.00 to 1.00. The fit is better when this value is 
close to 0.00; but a value equal or less than 0.08 indicates that the model fits the data 
well. Finally, we will add the Weighted Root Mean Square Residual (WRMR), which 
is an index suitable for categorical data estimated using the WLS or DWLS method. A 
value less than 1 indicates that the model fits the data well. 

1.3.1.2. Parsimonious fit indices 

These indices show the originality in taking the parsimony of the theoretical model 
into account. Parsimony is a central concept in structural equation modeling [PRE 06]. It 
refers to the small number of parameters to be estimated required to achieve a given 
goodness of fit. Moreover, it is important to consider that a good model fit as indicated 
by the fit indices is usually due to either the plausibility of the theoretical representation 
specified by the researcher or the over parameterization of the model, that is its lack of 
parsimony. In fact, although it perfectly fits the data, a saturated model has no use 
because its adequacy is due to its lack of parsimony. It is a complex model with a 
number of parameters to be estimated equal to the number of variances and covariances 
observed, and, thus, zero degrees of freedom. In contrast, seen in Figure 1.8, the null 
model (not to be confused with the null hypothesis), as it is highly parsimonious, is 
severely disadvantaged. This is a simple model that has little, if any, parameters to be 
estimated, and therefore a very high number of degrees of freedom, but which fits the 
data very poorly. The reason is that the scarcity of parameters to be estimated leaves 
more opportunities for data to freely differ from reproduced data. It is therefore clear that 
the less parsimonious models tend to approximate data more easily, hence the need to 
penalize them, otherwise, as pointed out by Browne and Cudeck [BRO 93], there would 
be great temptation to include meaningless parameters for the sole purpose of making it 
seem as though the model is a good fit. A goodness-of fit indice that neglects 
information concerning parsimony can be misleading. 
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And since the number of degrees of freedom is linked to parsimony, and as it 
somewhat represents the number of independent and objective conditions according 
to which a model can be rejected due to the lack of fit, it constitutes an important 
detail for estimating the plausibility of the model. The parsimony ratio (PRATIO) 
captures this information. It is the relationship between the model and the number of 
degrees of freedom of the theoretical model (dft) and that of the null model (dfn) 
which is equal to k(k – 1)/2  where k is the number of measured variables: 

PRATIO = ௗ௙೟.ୢ௙೙.   [1.19] 

But we can get a different ratio by dividing the number of degrees of freedom of 
the theoretical model by the maximum possible number of degrees of freedom 
(dfmax), which is here equal to k(k + 1)/2. The values of these ratios vary between 0 
and 1. A model is even more parsimonious when this value is close to 1. In fact, a 
saturated model (i.e. the less parsimonious one) gets a zero PRATIO. Some authors, 
such as Mulaik, James, Van Alstine, Bennett et al. [MUL 89), advocate multiplying 
this ratio with the fit indices to get the adjusted indices taking parsimony into 
account. 

However, the most recommended index in this category is the Root Mean Square 
Error of Approximation (RMSEA)9 with its confidence interval of 90%: RMSEA = ඥχమିௗ௙ඥௗ௙(୒ିଵ)  [1.20] 

where: 

– χ² = the chi² value of the specified and estimated theoretical model; 

– df = degrees of freedom of the specified and estimated theoretical model; 

– N = sample size. 

The value of this index ranges from 0.00 to 1.00, with a ≤ 0.06 value indicating 
that the model fits the data well. Ideally, this value should have a confidence interval 
of 90%, with a minimum close to 0.00 and a maximum not exceeding 0.100. 

In the presence of alternative non-nested models (in competition), some 
parsimonious fit indices help us discern which of them is the best fitting model. The  
 
 

                            
9 RMSEA can be classified as an absolute fit index. 
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Akaike Information Criterion (AIC) as well as the Bayesian Information Criterion 
(BIC) also perform this function. 

The first is obtained in lavaan in the following way10: 

AIC = – 2logL + 2p  [1.21] 

where: 

– logL = log-likelihood of the model estimated (H0);  

– p = number of parameters to be estimated in the model. 

lavaan provides the value of log-likelihood (“logl”) as well as the number of free 
parameters to be estimated (“npar”).  

The second is obtained in lavaan as follows: 

BIC = – 2logL + 2p*log(N)  [1.22] 

where: 

– logL = log-likelihood of the model estimated (H0);  

– p = number of free parameters to be estimated in the model; 

– log(N) = logarithm of the sample size. 

When one has to choose between several alternative non-nested models (competitive 
models), it should be one for which the AIC and BIC values are the lowest, or even 
negative. But as there are no standard indices, it is impossible to indicate the smallest 
desirable value as well as the broader unacceptable value [HAY 96]. 

We clearly see through their calculations whether, for these two indices, the lack 
of parsimony is to be penalized. Thus, models with a large number of free 
parameters to be estimated, that is the least parsimonious models (those tending 
towards model saturation, because over-parameterized), are penalized by an inflation 
of their AIC and BIC value. The BIC is, from this point of view, more 
uncompromising than the AIC, and more severely penalizing of the lack of 
parsimony. 

                            
10 There are several formulas of this index. For example, in Amos, AIC = χ² + 2p. BIC and 
AIC are calculated by lavaan only with the maximum likelihood estimation method (ML and 
its “robust” versions). 
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1.3.1.3. Incremental fit indices 

These indices evaluate the goodness of fit of the specified model against a more 
restrictive model considered to be nested in the specified model. The concept of nested 
models (nestedness) is important and needs to be explained. Two models are 
considered as being nested when one is a special case of the other. And several models 
can form a nested sequence when, hierarchically, each model includes the previous 
models as special cases. In fact, they are alternative models that, while they have the 
same specifications, differ only in the restrictions that each of them can be subjected 
to. Such a sequence can be represented on a continuum whose extremes are, on the one 
hand, the simplest model, that is the null model (Mn) that, undergoing the maximum 
restrictions, contains no free parameters to be estimated; and, on the other hand, the 
most complex model, that is the saturated model (Ms) in which the number of free 
parameters is equal to the number of variances and covariances of the observed 
variables. The first provides the worst approximation of the data, while the second 
provides the perfect fit. Figure 1.8 illustrates the same. It will be noted that Mn is 
nested in Ma; Mn and Ma in Mt; Mn, Ma, and Mt in Mb ; and finally Mn, Ma, Mt, and Mb 
in Ms. 

 

Figure 1.8. Nested SEM models (inspired by [MUE 96]) 

Incremental fit indices are based on the comparison between the specified 
theoretical model (Mt) and a nested model called the “baseline model”, in which the 
null model (Mn) – also called the “independence model”, as it postulates that all 
covariances are zero, which implies a complete (but unlikely) independence between 
variables of the model – is the simplest and most widely used version for this type of 
comparison. 

In fact, these indices measure the relative decline of the discrepancy function 
(Fmin) (or the relative increase of the fit, which amounts to the same) when we 
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replace a null model (Mn) with a more complex model (for example, Ma, Mt or Mb). 
Their values range from 0, indicating a lack of fit, and 1 a perfect fit (although they 
may exceed these limits for some indices). But according to Hu and Bentler  
[HU 99], a ≥ 0.95 value suggests a good fitting model. However, a value greater 
than 0.90 is still used for judging whether a model is acceptable or not. A 0.95 value 
indicates the increase in the goodness of fit of the specified model with respect to 
the null model: it can indeed be inferred that, applied to the same data, the first 
model is 95% better than the second. The Comparative Fit Index (CFI) and the 
Tucker-Lewis Index (TLI) are the best representatives: CFI =  ଵି ୫ୟ୶ [(χ౪మ ି ௗ௟౪),଴].୫ୟ୶ [൫χ౪మ ି ௗ௟౪൯,൫χ౤మ  ି ௗ௟౤൯,଴]   [1.23] 

where: 

– χ²t = the chi² value of the specified and estimated theoretical model; 

– dft = the degrees of freedom of the specified and estimated theoretical model; 

– χ²n = the chi² value of the baseline model (“null” model); 

– dfn = degrees of freedom of the baseline model (“null” model); 

– max = indicates the use of the highest value, or even zero if this is the highest 
value.   

TLI =  ൬ χ౤మ೏೑౤൰ ି ቆ χ౪మ೏೑౪ቇ൬ χ౤మ೏೑౤൰ି ଵ   [1.24] 

where: 

– χ²t = the chi² value of the specified and estimated theoretical model; 

– dft = the degrees of freedom of the specified and estimated theoretical model; 

– χ²n = the chi² value of the baseline model (“null” model); 

– dfn = degrees of freedom of the baseline model (“null” model). 

The advantage of TLI with respect to CFI is that it penalizes the model's lack of 
parsimony. It always results in fewer degrees of freedom (Figure 1.8). We can recall 
that the less a model is parsimonious (tending towards saturation) the more likely it  
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is to fit the data. Thus, the model fit is attributable more to the lack of parsimony 
than the theoretical construction that it represents. 

It should be emphasized that, unlike the AIC and BIC indices that are used to 
compare non-nested models, the CFI and the TLI can be used to compare nested 
models. We will discuss more on that later. 

Which one to choose? The answer is far from simple, as both opinions are still 
divided about fit indices. Hoyle and Panter [HOY 95] recommend using χ² (or 
scaled χ²), Goodness-of-Fit Index (GFI)11, at least two incremental fit indices, in this 
case the TLI and CFI, as well as parsimonious fit indices when necessary. As for 
Jaccard and Wan [JAC 96], they propose retaining χ², GFI, and SRMR in the 
category of absolute fit indices, RMSEA in the parsimonious fit indices and finally, 
CFI in the incremental fit indices. 

These opinions are sufficient to show that it is not possible to recommend a 
standard list of fit indices that could be unanimously accepted, especially since the 
choice of a fit indice could be guided by theoretical and methodological 
considerations (e.g. sample size, estimation method, model complexity, data type). 
In Hu and Bentler [HU 98, HU 99], readers will find details about the sensitivity of 
these fit indices to all these methodological aspects. The only advice we can afford 
to give, however, is to closely follow developments concerning fit indices. In the 
meantime, you can carefully follow the recommendations of Hu and Bentler [HU 99] 
or Schreiber and his co-authors [SCH 06] who suggest the following guidelines for 
judging a model goodness-of-fit (based on the hypothesis where the maximum 
likelihood method is the estimation method): 1) RMSEA value ≤ 0.06, with 
confidence interval at 90% values should be between 0 and 1.00; 2) SRMR value  
≤ 0.08; and 3) CFI and TLI values ≥ 0.95. 

However, we will subscribe to the idea of Chen et al. [CHE 08] that not only is 
there no “golden rule” on these fit indices, but there can be no universal, 
interchangeably ready-to-use threshold for them in all models. In fact, [CHE 08] 
showed how the universal threshold of 0.05 for RMSEA penalizes (rejects) good 
models estimated with a small sample size (N < 100). And these authors conclude 
quite rightly about the use of fit indices that in fine, a researcher must combine these 
statistical tests with human judgment when he takes a decision about the goodness-of-
fit of the model (p. 491). Table 1.11 summarizes all the goodness-of-fit indices 
presented in this chapter. 
                            
11 Proposed by Jöreskog and Sörbom (1974) as early as the first commercial version of 
LISREL, this first adequacy index (much like the Adjusted Goodness-of-Fit Index, AGFI) 
was famous for quite long. Highly criticized, it has no longer used.   
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Fit type Index Interpretation for guidance 

Absolute 
RMR/SRMR ≤ 0.08 = good fit 

WRMR ≤ 1.00 = good fit 

Parsimonious 

PRATIO     Between 0.00 (saturated model) and 1.00 
(parsimonious model) 

RMSEA 
≤ 0.05 = very good fit 

       ≤ 0.06 and ≤ 0.08 = good fit 

AIC    Comparative index: the lower value of this 
index, the better the fit 

BIC    Comparative index: the lower value of this 
index, the better the fit 

Incremental 
CFI 

         ≥ 0.90 and ≤ 0.94 = good fit 
≥ 0.95 = very good fit 

TLI 
        ≥ 0.90 and ≤ 0.94 = good fit 

≥ 0.95 = very good fit 

Table 1.11. Some goodness-of-fit indices available in lavaan 

1.3.2. Local fit indices (parameter estimates) 

These indices concern all the individual parameter estimates of the model and allow 
for a more analytical examination of the solution. They make it possible to ensure that it 
is a proper solution, that is to ensure that it contains no inadmissible values devoid of all 
statistical sense like standardized estimates higher than 1 or negative variances. These 
offending values are known as Heywood cases, which have multiple causes. In Dillon, 
Kumar and Mulani [DIL 87], there are clear details on the sources as well as the 
solutions for these Heywood cases. Furthermore, the reader may refer to Hayduk [HAY 
96] with regard to negative R², which are often the ones to suffer in non-recursive models 
(see Chapter 3 of this book). The author proposes a very interesting solution. 

Convergence to a proper solution is compulsory for it to be accepted. Another 
factor is the coherence of the parameter estimate values from preliminary theoretical 
considerations. Indeed, to obtain values devoid of any theoretical meaning (as 
opposed to those predicted, for example) makes a solution nonsensical, even if the 
overall goodness-of-fit indices point in its favor. 

Thus, individually reviewing each parameter is necessary to interpret results, and is 
useful for improving a model when it fails to fit the data. In fact, it is important to 
know whether the value of a parameter is statistically significant, to know the error 
variance (i.e. the unexplained variance portion of a variable) as well as the total 
proportion of variance of an endogenous variable explained by other variables in the 
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model (R²). In addition, standard errors, which refer to the precision with which 
parameters were estimated, must be neither too small (close to zero) nor excessively 
large (even though there are no precise criteria on this subject). 

The significance of a parameter estimate is worth consideration. It refers to using a 
statistical test to determine if the value of a parameter significantly differs from zero. To 
do this, we simply divide the non-standard value of the parameter by its standard error 
(“std.err” in the lavaan results). The ratio obtained is interpreted, when the distribution is 
normal and the sample large enough, as a z-test (“z-value” in lavaan), meaning an absolute 
value greater than 1.96 helps conclude that the parameter estimate is different from zero at 
a threshold of statistical significance of 0.05. The threshold of significance of 0.01 
requires an absolute value greater than 2.58. However, when the sample size is small with 
normal distribution, the ratio is read as a t-test requiring the use of a table to assess its 
statistical significance at a fixed threshold. It is useful to know that in the case of a large 
sample, some very low estimates are often significant. 

As we already know, the path coefficient measures the direct effect of a variable  that 
is a predictor of a criterion variable. We also know that there is an effect only when the 
value of the coefficient is significantly different from zero. What remains to be seen now 
is the relative importance of an effect.  

It is clear that, although statistically significant, standardized path coefficients may 
differ in the magnitude of their respective effects. Some authors, especially Kline  
[KLI 16], suggested taking into account significant standardized values close to 0.10 
with a weak effect, values that are approximately 0.30 with a medium effect, and those 
greater than 0.50 with a large effect. 

1.3.3. Modification indices 

Modification indices help identify areas of potential weakness in the model. Their 
usefulness lies in their ability to suggest some changes to improve the goodness-of-fit of 
the model. In fact, modification indices (provided by all software) can detect the 
parameters, which contribute significantly to the model’s fit when added to it. They even 
indicate how the discrepancy function (and therefore χ²) would decrease if a specific 
additional parameter, or even a set of parameters (in this case, we use multivariate 
Lagrange multiplier test; see Bentler [BEN 95] is included. These indices are generally 
accompanied by a statistic called the Parameter change, indicating the value and its 
tendency (positive versus negative) that a parameter would get if it were freed. According 
to Jöreskog and Sörbom [JÖR 93], such information is useful to be able to reject models, 
in which the tendency of the values of freed parameters turns out to be incompatible with 
theoretical orientations. The Wald test, which is to our knowledge available only in the 
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EQS [BEN 85, BEN 95] and SAS [SAS 11] software, reveals parameters that do not 
contribute to the model fit of the model and removing which will improve this fit. More 
detailed and illustrated information on using the Wald and Lagrange multiplier tests can 
be found in the book by Byrne [BYR 06]. 

Let us remember that such operations are used with the risk of severely betraying the 
initial theoretical representation and compromising the confirmatory approach. Whatever 
it may be, any revision is part of a re-specification approach of the model. We thus move 
from the actual model evaluation to model specification, and rather model 
respecification. And a re-specification is all the more sufficient when it is supported by 
and coherent with the initial theoretical specification. This return to the starting point 
closes a loop, the outcome of which – after a new model evaluation – is the final 
rejection of either the model or its acceptance and, consequently, its interpretation. 

To conclude, it should be stressed that any solution must be examined in the light 
of three important aspects: (1) the quality of the solution  and the location of areas of 
potential weakness and misfit (i.e. absence of offending estimates values such as 
negative variances) and potential areas of weakness of the model (to be identified 
using modification indices); (2) the overall model fit of the model; (3) local fit indices 
of the solution (individual parameter estimates and their significance). 

Thus, reducing the assessment of a model to its overall fit is a mistake that 
should not be committed. We will discuss more on that later. 

1.4. Confirmatory approach in SEM 

In most cases, using multiple regression involves integrating a set of predictor 
variables in the hope that some will turn out to be significant. And we would have as 
much chance as the variables introduced in the model. Although guided by some 
knowledge of the phenomenon in under study, this approach is considered as 
exploratory. Everyone knows that we often proceed by trial and error, trying various 
successive combinations, and sometimes getting a little fortunate through this. 
Moreover, it is this exploratory side that makes this a pretty exciting technique. It is 
fully covered by the motivation to discover. It is to researchers what excavations are to 
archaeologists. It is the same with most factor analysis methods whose exploratory 
nature represents the main purpose. 

Structural analyses are part of a confirmatory approach: a model is first specified and 
then put to the test. A rather simplified representation of reality, a model designates a 
hypothetical system in which several phenomena maintain various relations with each 
other. The hypothesis, for which the model is a simple formalization, concerns the exact 
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organization of these phenomena within an explanatory system. It should also be 
mentioned that apart from the strictly confirmatory approach that seeks to accept or 
reject a model that is put to the test, we can recognize, with Jöreskog and Sörbom [JÖR 
93], two other strategies: the competing models and the model generating, as befits 
structural equation modeling. 

In the case of competing models, researchers specify several alternative models 
for the same data that they would have specified earlier, in order to retain the best 
fitting model. For this purpose, they have comparative statistical fit indices that will 
be discussed later in the book. 

Model generating occurs when the initial model fails to fit the data or when a 
researcher proposes a test model whose limits he knows in advance despite the 
theoretical contribution that led to its development. The researcher proceeds by way of 
modification-retest as many times as is necessary to obtain a model that fits its data. 
This is rather a model generating procedure and not a mdel testing in itself. Each 
model respecification may theory-driven or data-driven. But, as pointed out by  
[JÖR 93], the aim of this approach is both the statistical fit of the re-specified model as 
well as its plausibility and its theoretical likelihood. For, while perfect and statistically 
adequate, a model has value only if it has an acceptable theoretical plausibility. 

It turns out that the model generating strategy is increasingly successful with 
SEM users. There are at least two reasons for this. The first is the flexibility of this 
approach with respect to the “all or nothing” advocated by the strictly confirmatory 
approach. The second is the existence of tests that will help the user examine the 
model to improve its fit. These tests, the best known of which are the modification 
indices, the Lagrange multiplier and the Wald tests [BEN 95], are important because 
they are available in almost all SEM software, and because they are easy to use and 
interpret even if their effectiveness remains to be proven. The modification index, 
for example, helps detect parameters that would improve the model fit when 
included into the model. 

The use of post-hoc modifications in model generating approach gives rise to a 
fundamental problem, that of the confirmatory nature of SEM. Moreover, although 
these modifications are technically easy to use, their usefulness and effectiveness in 
generating the right model are still to be proved. The various studies and simulations 
carried out by MacCallum [MAC 86, MAC 88, MAC 92, SUY 88,], whose fierce 
hostility towards the model generating strategy is known [MAC 96], show the 
difficulty in finding the good model, some parameters of which have been 
deliberately altered for research purposes, despite all the indices and procedures 
available. 
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Not that this strategy, which is now popular with the research community, should be 
banned, but it is important to specify the precautions as regards its use. First, any 
modification must be supported by theory-based rationale, failing which there is a risk  
of compromising the original confirmatory approach. Then, it is preferable to opt for 
competing models that have been previously specified on a clear, theoretical basis. 
Finally, it is imperative to validate the model generated with a new sample. It is a cross-
validation procedure [CUD 89, CUD 83], which also applies to the case where we have a 
single sample. In fact, it is possible to randomly partition a sample, whose size is large 
enough, into two parallel subsamples, a calibration sample and a validation sample, or 
even carry out a multigroup analysis with these two subsamples. There is also an index 
proposed by Browne and Cudeck [BRO 89], called the Cross-Validation Index (CVI), 
that helps assess the similarity between models from each of these two subsamples. This 
index is the discrepancy function (F) between the reproduced covariance matrix of the 
calibration sample Σc and the covariance matrix of the validation sample Sv  

[BRO 93]. Cross-validation is much better when the value of this index is close to zero, 
indicating that the model is identical in the two sub-samples: 

CVI = F (Sv, Σc)  [1.25] 

Ultimately, the researcher should not lose sight of the confirmatory nature of the 
approach for which he uses structural equation modeling. It is fully an approach for 
confirmation of an a priori specified model within a hypothetico-deductive reasoning. 
In this case, the hypotheses are based on a well-defined nomologic network. 

Although it is sometimes necessary to ease the strictly confirmatory approach, it is 
perilous to completely deviate from it. Here, we share the appeal by MacCallum  
[MAC 95] to the editors of scientific journals, inviting them to reject any article using 
SEM that does not conform to the confirmatory approach or does not take account of 
precautions and demands that SEM requires. But we also see that, in reality, the 
inductive and deductive approaches intermingle constantly, and that the borders between 
the two are less thick than it seems. In fact, it is rare for even an inductive approach to be 
atheoretical and completely extrinsic to any hypothesis a priori, and for its empirical 
results to rely on pure laws of chance. 

1.5. Basic conventions of SEM 

The best way to formalize a theoretical model is to diagramm it. It involves making 
a graph to represent relationships in a system of variables on the basis of prior 
theoretical information. It is clear that the causal nature of these relationships can not 
be demonstrated; however, we refer to causal models (Jöreskog & Sörbom, 1996) and 
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causal diagrams when we deal with path analysis. We will also use “effect” or “effect” 
to describe the relationships that variables have within a causal model. 

There is twofold interest in a diagram. As clear and comprehensive as possible, it 
should be a faithful translation of the theoretical model; it also establishes an 
isomorphic representation of all structural equations that can replace the command 
syntax, thus becoming an input diagram for structural equation modeling software 
(input) for software through a diagrammer. 

Although each software has some specificity, all of them share some conventions 
concerning diagramming models. Thus, with the beginner user in mind, we opted to 
present these conventions. This presentation seems fundamental to us, as the diagram 
is now the emblem of structural equation modeling. It is also essential for fully 
mastering modeling. 

Figure 1.9 shows a standard diagram of structural equation modeling. Here, the 
modifier “standard” is used to designate basic and simple models with respect to 
more complex ones that have, for example, correlations between measurement error 
or feedback loops (i.e. non-recursive models that we will discuss in Chapter 3 of this 
book). 

 

Figure 1.9. Standard SEM diagram 

X1 X2 X3 Y7 Y8 Y9Y6

X4 X5 X6 X7 Y3 Y4 Y5

F1

F2

F5

F4

F3

Y1 Y2

e1 e2 e3 e13 e14 e15 e16

e12e11e10e7e6e5e4

e8 e9

E5

E4

E3



Structural Equation Modeling     49 

It is easily seen that this diagram contains five objects with different facets 
summarized in Figure 1.10. 

 

Figure 1.10. Conventions for drawing diagrams 

1.6. Place and status of variables in a hypothetical model 

Whether manifest (observable) or latent, variables can either be exogenous or 
endogenous. They are considered to be exogenous when they never seem to be criterion 
variables in any structural equation of a model. They are easily identifiable in a diagram 
because they have no single arrow pointed at them. Correlated factors F1 and F2 in 
Figure 1.9 are two exogenous latent variables. Generally, they are the starting point of 
the model. However, endogenous variables are those that seem like criterion variables in 
at least one of the structural equations of the model. They are easily identifiable in a 
diagram, owing to the fact that at least one arrow points to them. Factors F3, F4, and F5 
in Figure 1.9 represent endogenous latent variables. An endogenous variable is said  
to be “ultimate” when it is the last variable in the system. It is in fact the case with F5 in 
Figure 1.9. 

1.7. Conclusion 

After having defined structural equation modeling, we tried to show how its 
foundations are based on regression analysis and factor analysis. By combining them 
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in one approach, structural equation modeling makes them richer and more flexible. 
And Reuchlin [REU 95] had every reason to write, “the recent structural models are 
[...] a progress rather than an innovation”. 

The regression coefficient seemed like a key element in the calculations of 
structural models. In fact, we have seen its usefulness in the derivation of the matrix 
that would serve to test the model fit. Model fitting is primarily statistical. It involves 
knowing whether the dissimilarity between the reproduced correlation matrix and the 
observed correlation matrix is statistically significant. If such were the case, and with 
the χ² test making it possible for us to confirm it, the model from which the matrix was 
reproduced is deemed to be unsatisfactory. Otherwise, when χ² is not so significant, 
the question of no statistically significant, the proposed (specified) model provides a 
good fit to the data. But let us remember that χ² is far from being a reliable and robust 
model fit indice. 

Structural equation modeling, which is the generalization of regression analysis 
and factor analysis, naturally has some points in common with the two. First, all three 
come under linear statistical models, which are based on the assumption of 
multivariate normal distribution. The statistical tests used by all these approaches are 
also based on this assumption. Then, none of them is able to establish a causal link 
between variables, like any other statistical method. As for the differences between 
these approaches, three are memorable. The first relates to the approach. It is 
confirmatory with structural equation modeling and not exploratory, as this is the  
case with factor analysis or regression analysis. The second lies in the fact that 
equation models are the only ones able to estimate the relationship between latent 
variables. The last point concerns the possibility of equation models to insert and 
invoke mediating variables within a theoretical model. Such an opportunity is not 
negligible, especially if one accepts like Tolman [TOL 38] that “theory is a set of 
intervening variables” (p. 344). We will explore these features in more detail in the 
following chapters. 

1.8. Further reading 

Readers who wish to deepen their understanding of the main basic concepts in 
this chapter may refer to the following books: 

BOLLEN K.A., Structural Equations with Latent Variables, John Wiley & Sons, Oxford, 1989. 

FABRIGAR L.R., WEGENER D.T., Exploratory Factor Analysis, Oxford University Press, New 
York, 2012. 
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GRIMM L.G., YARNOLD R., Reading and Understanding Multivariate Statistics, APA, 
Washington, 1995. 

HOWELL D.C., Fundamental Statistics for the Behavioral Sciences, CENGAGE, Wadsworth, 
2017. 

LOEHLIN J.C., Latent Variable Models. An Introduction to Factor, Path and Structural 
Analysis, 3rd edition, Lawrence Erlbaum Associates, New York, 1998. 



 

 



2 

Structural Equation Modeling Software 

There is no doubt that the rise of structural equation modeling (SEM) is largely 
due to the development of many computer programs that are more accessible and 
less elitist than the pioneer and classic LISREL. In fact, mathematical methods used 
in SEM are difficult and laborious without the power and speed of computer 
calculation. The availability of software with more user-friendly interfaces is not 
specific to SEM. In fact, this trend began only a few years ago and has already 
created an impact on scientific and office software. But the risk for this lies in the 
fact that a “ready-to-use” solution would encourage for software mechanical use. 
Click-button software offer users the impression of having done away with the need 
to know the theoretical basics of tools and tests that they use. This is not to say that 
we should discredit these technical advances that have made software more 
powerful, faster, and more enjoyable to use. However, it should be noted that to 
address the lack of initiative that these software leave users with, users must 
seriously invest time on the theoretical foundations of the statistical procedures used. 
Besides, scientific documentation that accompanies some programs is generally 
quite complete and, in addition, peppered with examples that are easy to understand 
and replicate. 

Several structural modeling software are currently available. LISREL, the first 
SEM software [JÖR 74], was succeeded by, among others, EQS [BEN 85], Amos 
[ARB 95] and Mplus [MUT 98]. Two innovations have greatly contributed to the 
flexibility of use of such software: first, the disappearance of the Greek notations that, 
in LISREL, refer to different matrices and different vectors of a model (Β, Γ, Θδ, Λ, Φ, 
etc.). Second, the command language has been completely simplified (e.g. Simplis for 
LISREL [JÖR 93]) or completely replaced by diagrams via a diagrammer interface 
(e.g. Amos). Deplored by some, and also hailed by others [BEN 10a], abandoning 
mathematical symbols in the form of Greek letters, nevertheless, helped to demystify  
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and popularize the SEM. Joeskög and Sorböm [JOE 96], who designed LISREL, 
justified such a development in order to make modeling accessible to “students and 
researchers with limited mathematical and statistical statistical training who need to 
use structral equation models to analyze their data and also for those who have tried 
but failed to learn LISREL command language” (p. i). What is even more important is 
the possibility offered by some software in the form of diagrams, and not the 
command language, to specify the model to be estimated and run the program. The 
user has to simply enter data, draw up diagrams of the model, and the software takes 
care of the rest. These programs even provide useful error messages. However, the 
command language of some software has become so simple that using it has turned out 
to be more convenient than the GUI, especially in the presence of complex models. 

Thus, grosso modo, we can distinguish between two classes of SEM software: 
the commercial and thus paid ones (LISREL, Amos, EQS, Sepath, Mplus) and those 
that are free (Mx, OpenMx, sem, lavaan, Onyx, RAMpath) that are open-source. 
Although still in their early stages (except Mx), they offer features, in constant 
evolution, comparable to those available in paid software. These free software have 
the advantage of being all compatible with the R environment. The “sem” package 
[FOX 06] was the first module dedicated to SEM in R; lavaan [ROS 12] and 
RAMpath [ZHA 15] are, to our knowledge, the last SEM created in the R 
environment. Although it has several specificities and certain advances, RAMpath is 
however backed by lavaan, the presentation and steps for familiarization of which 
are presented here. Thus, lavaan, an open-source software developing in the R 
environment, will accompany us throughout this book. 

Furthermore, it should be noted that there is a way to use lavaan outside the R 
environment; this is done by using the JASP environment, an open click-button 
statistics program (https://jasp-stats.org/). However, the integration of lavaan to 
JASP, through the SEM (Structural Equation Modeling) module, is in its nascent 
stage, and hence its use could be temporarily difficult. To open lavaan in the latest 
version of JASP (version 0.8.4), simply click on the “+” menu of the JASP menu bar 
and choose “SEM” among the options in the drop-down menu. Let us hope that the 
JASP environment will soon give lavaan an alternative as complete as the R 
environment, to which we will devote the following chapter. 

2.1. R environment 

R is both a mathematical environment and an open-source program or software 
dedicated to statistically process data [ATT 88]. Designed in 1996 by Ross Ihaka  
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and Robert Gentleman (alias “R & R”) of the University of Auckland, R is not only 
free, but also in perpetual evolution as anyone can enrich it as needed by 
programming new packages and libraries more adapted to the habits, needs, and 
standards of one’s specialty. These include the “ROCR” packages (simplifying the 
creation of ROC curves for biostatisticians), “R.TeMiS” (intended for sociologists 
for lexicometric analysis of textual data), and, of course, for this book, “lavaan”, 
dedicated to SEM for a multitude of research specialities 

2.1.1. Installing R software 

The R software is available on GNU GPL (General Public License) on the 
CRAN website (Comprehensive R Archive Network) https://CRAN.R-project.org. 
Several mirror sites worldwide provide installation links for the software and 
packages for additional functions.  

2.1.2. R console 

After the installation is over, we will discover a sober environment made of a tool 
bar and a simple window with some homepage like information such as the version of 
the software, guarantee or access to documentation online (see Figure 2.1). This is the 
R console in which both instructions passed (i.e. commands through which we 
communicate with the program) and solutions to most of these commands (e.g. the 
output tables) will be displayed. 

If it is possible to enter the command-line directly in the console after the 
chevron “>”, we recommend that the user use the script editor that make it possible 
not only to build step by step, edit, and comment on the instructions before running 
them, but also to save all these instructions (or “script”) for later use. Finally, the 
possibility of using copy-paste is another advantage of using the editor, thereby 
facilitating the implementation of instructions. To open a script, simply click on 
“File → new script”1. 

                            
1 There are graphical interfaces that are quite user-friendly and ergonomic, such as RKWard 
(https://rkward.kde.org/Main_Page) and especially RStudio (https://www.rstudio.com/), 
allowing for easily handling data and making it easier to use R. The interface and usability of 
the software may be slightly different depending on the software version or the Windows or 
Mac environment. 
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Figure 2.1. R Console: the startup screen 

Finally, some pop-up windows may appear, such as “Device” containing 
graphical output and even documentation windows on packages and functions 
(accessible from “Help” in the toolbar). An overview of the main elements of the R 
environment is provided in Figure 2.2. 
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2.2. lavaan 

Developed by Rosseel [ROS 12], the open-source lavaan package has all of the 
main features of commercial SEM software, despite it being relatively new, as it is 
still in its beta version, meaning that it is being tested and built. “lavaan.survey” is a 
very recent add-on. 

From the outset, let us specify three essential points here. First, it is not 
necessary to master R to use lavaan. R will only serve as a mathematical 
environment for lavaan and, in this case, to import data. However, it is desirable to 
know R very well to make full use of their mutual and complementary features. 
Next, communication with lavaan is done using a very simple command language. 
Finally, lavaan provides an output diagram, meaning a model diagram created from 
a model analysis. The diagram makes it possible to do a final check of the specified 
model by the using lavaan syntax (see Figure 2.2). 

In addition, users can easily find good quality help and tutorials on the Internet: 
https://groups.google.com/d/forum/lavaan and lavaan Project (http://lavaan.ugent.be/ 
tutorial/index.html). 

2.2.1. Installing the lavaan package 

Installing a package (for example, lavaan) can be done from the R console by 
using the following command: 

>install.packages("lavaan", dependencies = TRUE) 

It can also be done from the drop-down menu “Packages → Install 
package(s)…”, available in the menu bar of the R console. The user will be asked to 
select a CRAN mirror site from which the package will be downloaded, only the 
first time. We can simply select it from the list of packages and double-click to 
install it (Figure 2.3). 

2.2.2. Launching lavaan 

Once lavaan is installed, it must be launched (opened) each time using the 
following written command from the R console: 

>library (lavaan) 
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Figure 2.4. Procedure to load R packages (here lavaan) 

2.3. Preparing and importing a dataset 

There are many ways in R to import a data file. We will stick to presenting the 
method that we consider the simplest, putting ourselves in the shoes of a user who is 
unfamiliar with the R software. Data is imported in two steps: first, data preparation, 
and next, the actual import. 

2.3.1. Entry and import of raw data 

The first step is to enter data into an OpenOffice or LibreOffice worksheet, and 
then save the spreadsheet in the CSV format (separator: semicolon). The file will  
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thus have the extension “.csv”. Some precautions have to be taken before saving and 
importing a file. First, it seems wise to check the presence of outliers quite often due 
to input errors (for example, entering 44 instead of 4). Second, missing data should 
preferably be replaced by “NA”, meaning “Not Available” (see Table 2.1). 

 

Table 2.1. Spreadsheet saved in text format (.CSV) 

To import the file that we just prepared, simply send the following command 
from the R console: 

BASE <- read.csv2 (file = file.choose (), sep = " ;", dec = ",") 
 
Apparently complex, this instruction is composed of several simple elements: 

– BASE <-: this is the (arbitrary) name given to our data file; 

– read.csv2 (): this is the function commanding the reading of a CSV file; 

– file = file.choose (): this setting allows for opening a pop-up window offering a 
way to manually select the appropriate file, which has been prepared in this case 
(.csv); 

– sep = " ;"; indicates that the field separator is a semicolon; 

– dec = ",": indicates that the comma is the decimal separator here. 

By executing this instruction, a pop-up window opens and allows you to select 
the CSV dataset to import in R. Figure 2.5 illustrates this procedure. 

The base is now imported under the name “BASE”. We advise users to carry out 
at least three checks using “head ()”, “names ()”, and “str ()” to ensure that the data 
was properly imported in R (see Figure 2.5). 
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equation analysis. Incidentally, this analysis often to by the term of analysis of 
covariance structures? In fact, statistical assumptions underlying conventional 
estimation methods that are used by these analyses have been developed specifically 
for covariance matrices whose statistical distribution of elements differs from that of 
a correlation matrix. Therefore, it seems legitimate to wonder about the risks 
incurred by the analysis of a correlation matrix instead of a variance-covariance 
matrix. According to Jöreskog and Sörbom [JÖR 96], such a substitution might not 
only give incorrect standard errors and affect parameter estimates, but also produces 
incorrect  χ² and other goodness-of-fit indices (see also [CUD 89]). 

In addition, analyzing the variance-covariance matrix, unlike the correlation 
matrix, makes it possible to take into account and test hypotheses related to the 
variances. And finally, the fact that analyzing the variance-covariance matrix makes 
it possible to get a solution that is both standardized and non-standardized argues in 
its favor. 

However, the interest in analyzing the correlation matrix when the units of 
measurement of the observed variables are arbitrary is recognized. Similarly, it is 
recommended that the polychoric correlation matrix (and their asymptotic covariances 
calculated by most modeling software) in the presence of ordinal or dichotomous 
measures be analyzed. The reader will find a mathematical presentation and practical 
illustrations in Muthén [MUT 84, MUT 88, MUT 93]. 

In any case, it is imperative that the analyzed matrix (but it also concerns the 
reproduced matrix, the asymptotic covariance matrix) to be positive-definite matrix. This 
means that it should not contain any inadmissible values features such as negative 
variances and correlations exceeding the -1.00 to 1.00 range. Surely, a matrix is not 
recognized as positive definite when the value of its determinant is negative, and as 
singular when this value is zero. And, since an ill-conditioned matrix cannot be inverted, 
we then witness the failure of the estimation procedure, especially when it comes to the 
generalized least squares method or the maximum likelihood estimation method. The 
causes and remedies depend on the affected matrix, of course. But without going into the 
details, which are available in Wothkes’s seminal contribution [WOT, 93], we can 
mention a few reasons behind a not positive definite matrix: a high multicollinearity 
between variables, problems with handling missing data, small sample size etc.  

Used as input, these matrices can be accompanied by the observed variable means 
when the analysis also focuses on means (mean structure analysis). When the analysis 
focuses on the covariance/correlation matrix (covariance structure analysis), it is 
assumed that the means of all latent and manifest variables are zero. This hypothesis is 
not only too restrictive, but also makes us lose a lot of important information. In fact, it 
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is possible and even preferable to combine the two analyses: covariance structure and 
mean structure. We will come back to this when we discuss multigroup models and 
latent growth models (see Chapter 4). 

Unlike lavaan, some SEM software can analyze a correlation matrix, with the 
risks noted above, as if it were a covariance matrix. But all software can convert a 
correlation matrix into a variance-covariance matrix when the standard deviation of 
the variables are available. The reader will find practical details on how to use a 
covariance matrix in lavaan or convert correlation matrix into a covariance matrix to 
be used as input (instead of raw data) in Chapter 3 of this book. 

2.4. Major operators of lavaan syntax 

Specifying a model is describing the constituting parameters for the software that 
will be in charge of model fitting procedure (meaning the estimation phase of the 
model). It involves command-lines containing instructions describing the 
hypothetical model we want to test. Let us assume that our model is a simple 
regression of Y on X (Figure 1.2). How do we transcribe this model to lavaan in 
order for the latter to estimate the former? By using, for example, the tilde2 (~), 
which is one of the operators of the lavaan syntax, the following instruction “Y ~ X” 
means that our model is a regression of Y on X. Table 2.2 summarizes the major 
operators that will be required to transcribe the models into a syntax understandable 
by lavaan program. 

Command Operator Illustration Significance 
Estimate a covariance 

(cor) ~~ X ~~ Y X is correlated with Y 

Estimate a regression ~ Y ~ X Y is regressed on X 

Define a reflective 
latent variable =~ F = ~ item 1 + 

item 2 + item 3 

The F factor is measured by 
indicators item 1, item 2, 

and item 3 over which it has 
effects 

Define a formative 
latent variable <~ F < ~ item 1 + 

item 2 + item 3 
The factor is formed by 

items 1, 2, and 3 

 

                            
2 To get a tilde: alt gr + 2 (alphanumeric keypad) followed by space or enter (alt + n on a Mac 
OS).  
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Estimate the intercept ~ 1 
item 1 ~ 1 

F ~ 1 

Intercept of item 1 
Intercept of latent variable 

F (factor) 

Label/fix a parameter * 
F = ~ 1*item 1 

+ b1*item 2 
+ b2*item 3 

Item 1 is set to 1, item 2 is 
named “b1” and item 3 

“b2”. The name must begin 
with a letter. 

Constrain parameters 
to equality = = b1 = = b2 

Factor loading of item 1 
equals that of item 2 

(giving the same name to 
both items is another way to 

force them to be equal: 
b*item 2 + b*item 3). 

Create a new 
parameter : = b1b2: = b1*b2 

Define a parameter that is 
not in the model (for 

example, indirect effect) 
from the existing 

parameters. Example: b1b2 
= indirect effect of 

parameters b1 and b2 

Insert a comment in 
the syntax # b1b2: = b1*b2 # 

indirect effect 

Explain to the reader the 
meaning of a command (for 
example, that here b1b2: = 

b1*b2 is used to estimate an 
indirect effect 

 

Table 2.2. Summary of the main operators of the lavaan syntax 

2.5. Main steps in using lavaan 

It should be noted that all the names that precede the assignement operator (i.e. 
the chevron “<-)”3 are different names assigned arbitrarily by the user. There are 
three: a name for the dataset (which may be different from that of the imported CSV 
file), a name for the specified model, and another for the estimated model. The logic 
is simple: in fine, results concern the estimated model that must be identified by the 
name assigned to it; the estimation is for the model specified using the syntax and 
must be recognized by the name it has been assigned, using the data identified by the 
name assigned to them in step 1. We advise using short, simple names without 
accentuation. In order to simplify these steps, we will name the imported dataset 
“BASE”, the model to be specified “model.SPE”, and the specified model to be 
                            
3 The symbol “<-” can be replaced with the “=” symbol. 
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estimated “model.EST” throughout this book. Table 2.3 summarizes these different 
steps. 

Step Illustration Significance 

1 - Import data 

BASE <- read.csv2 (file = 
file.choose (), sep = " ;", dec 

= ",") 

 

Simply import and rename the data 
file. Here, the assigned name is 

“BASE”. 

2 - Model 
specification 

model.SPE <- “model 
syntax” 

or 

model.SPE = “model 
syntax” 

Name the model to be specified. 
Next, re-transcribe the structural 

equations contained in a model into 
a syntax understood by lavaan using 

operators. 

3 - Model 
estimation 

model.EST <- 
sem (model.SPE, 

estimator = "ML", data = 
BASE) 

or 

model.EST = sem 
(model.SPE, …) 

Name the model to be estimated. 
Proceed to estimating/fitting the 

specified model named in step 2 by 
choosing a fitting function (sem, 

cfa, or growth; see below) using the 
maximum likelihood estimation 

method on the data in step 1. 

4 - Retrieve the 
results of the 
estimated model 

summary (model.EST, 
fit.measures = T, 
standardized = T, 
modindices = T) 

Obtain the results (standardized 
coefficients, fit indices, 

modification indices,  etc.) of the 
estimated model. 

5 - View the output 
diagram of the 
estimated model 

library (semPlot) 

semPaths (model.EST, 
"std") 

If necessary, obtain the diagram 
with standardized coefficients. 

NB. The “semPlot” package should 
be installed beforehand. There are 
alternatives like “lavaanPlot” and 

“RAMpath” packages. 

6 - Save the results saveFile (model.EST, 
"xxx.txt", "summary") 

Save results of the estimated model 
in a new text file that must be 

named. 

NOTE. – Steps 5 and 6 are optional. As the “lavaan Plot” package is very recent (June 2017), 
it only gives diagrams of models with measured variables (path analyses) currently. The 
ability to give diagrams of models with latent variables is soon expected, according to the 
developers of the package.  

Table 2.3. Main steps for using lavaan 
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2.6. lavaan fitting functions 

Fitting functions should not be confused with the estimation methods (estimators) 
referred to above. lavaan has three fitting functions that we will choose at step 3 
depending on the nature of the model to be estimated. It is about choosing the analytical 
framework: confirmatory factor analysis, SEM, or latent growth analysis (Table 2.4). 

Fitting function Illustration Significance 

cfa 
model.EST <- cfa 

(model.SPE, data = 
BASE) 

cfa = confirmatory factor analysis 
This function is used to carry out a 

confirmatory factor analysis (estimating 
a measurement model specified in step 2 

and named “model.SPE” here). 

sem 
model.EST <- sem 
(model.SPE, data = 

BASE) 

sem = structural equation modeling 
This function is used to estimate path 
models and structural equation models 

with latent variables. 

growth 
model.EST <- growth 
(model.SPE, data = 

BASE) 

growth = latent growth modeling 
This function is used to estimate latent 

growth models. 

Table 2.4. lavaan fitting functions 



3 

Steps in Structural Equation Modeling 

An SEM user’s toolbox must contain a theoretical model, empirical data and the 
appropriate software. The mathematical methods used in SEM require such complex 
and laborious computations that carrying them out manually is a heroic quest! The 
use of computer programs is more than necessary and they have even proved to be 
obligatory. Moreover, we have not found any work that uses these methods without 
using appropriate computation software. The introduction to lavaan in the previous 
chapter should be enough for one to be convinced that these programs are now quite 
accessible even to beginners. With regard to the theoretical model, its presence is 
involved in a slightly different process. Let us recall that this is a confirmatory 
process that is distinct from the exploratory approach of the data. 

This chapter was designed to serve as an introduction to this process that 
assumes conventions to be observed and sequences to be respected. The objective is 
to allow the user to go beyond the “technicist” vision of SEM and to better locate its 
place and importance within a research question. It also proposes familiarizing the 
user with different statistical indices that are specific to this technique and to help 
them read and interpret these indices. We will be approaching SEM both from the 
process point of view (that is, the different steps in using it) as well as the product 
point of view (that is, its results – more precisely: the solution – and their 
significance). Figure 3.1 summarizes the different steps in the process within which 
SEM is used. However, we chiefly focus here on model estimation and model 
evaluation, that is, examining its solution.  

Structural Equation Modeling with lavaan,  

First Edition. Kamel Gana and Guillaume Broc. 

© ISTE Ltd 2019. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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constructs that we wish to study, how do we select those aspects that we wish to measure 
among the multitude of other aspects? A measure must always be a precise 
quantification of a phenomenon that aims to provide a reliable and discriminatory view 
of it. It is quite obvious today: measurement and definition of a construct form an unique 
operation and then are the two sides of the same coin. 

Once measured, the constructs become variables within a model. In a model, as we 
have seen, they can be either endogenous or exogenous. Exogenous variables can be 
recognized by the fact that they are not subject to any predictive effect from any other 
variable. These are independent variables. The endogenous variables can be 
recognized by the fact that they are subject to the effect to the effect from at least one 
other variable, whether exogenous or endogenous. These are dependent variables. An 
endogenous variable may be considered a mediator variable when it plays the role of 
an intermediary between two variables. If the mediation (that is, the indirect effect1) is 
effective, then any change in the first variable will affect the mediator variable and any 
change in the mediator variable will be detectable in the endogenous variable 
dependent on this. Let us recall that mediation centers on mechanisms that underlie the 
predictive links between variables [MAC 08]. This endogenous or exogenous 
characteristic as well as the mediator can also be applied to latent  variables, which we 
will discuss later on in the text. Moreover, as Tolman (1938) wrote, “a theory, as I 
shall conceive it, is a set of “intervening variables”” that establish relationships 
between the researchers’ theoretical constructs (p. 344). 

Irrespective of the theoretical foundations on which it is built, a model is only of 
interest if it is verifiable, which assumes that we have reliable and valid measures for all 
constructs that the model will put to the test. By confronting the model with observable 
data, structural equation modeling makes it possible to evaluate both the likelihood as 
well as the validity of its measures. Moreover, the confirmation of a model does not 
really prove its exactitude, only its adequacy, that is how appropriate it is for empirical 
data. The results from a model are, in part, as valid as the measures used to produce 
them. 

3.2. Model parameters and model identification 

A model is a set of parameters that indicate the relationships between a corpus of 
variables. The parameters are thus the constituent elements of a model. 
                            
1 The term “mediation” is inappropriate here as the experimental approach alone is capable of 
demonstrating the existence of mediation. It would be more prudent to talk about an “indirect 
effect”, which is a necessary, but not sufficient, condition to establish mediation. We will return 
to this point.  
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Parameterizing a model consists of distinguishing between its constituent elements 
in order to communicate them to the software that will take charge of estimating 
them. In a model the value of a parameter can be free, fixed or constrained. A free 
parameter is a parameter whose estimation is to be obtained. On the other hand, a 
parameter is fixed when it is assigned a value a priori. A parameter set to zero 
simply signifies that it is removed from the model. Finally, a constrained parameter 
is one that is free but obliged to be equal to one or several other parameters. This is 
an equality constraint between parameters. 

The number of parameters no, to be estimated in a model play a role in its 
identification. In effect, before proceeding to estimate the free and/or constrained 
parameters, it is necessary to ensure that the model be identified. Model 
identification is a fundamental operation in SEM. Here, we have chosen to focus 
more on the logic underlying its use rather than its multiple and complex mathematical 
aspects. The reader can find a more technical discussion in Bollen [BOL 89] and 
Rigdon [RIG 95]. 

In fact, the concept of identification refers to two complementary aspects. First, it 
refers to the unique nature of a solution: an identified model is one that must yield the 
unique solution for each of the specified parameters. This sometimes involves ensuring 
that there is no equivalent models that coud fit the data well. To clarify this, let us take a 
simple and oft-used example for illustration. Let us assume that a theoretical model 
suggests a certain value for X + Y, and the data suggests that X + Y = 6. It is  
clear that there is no unique solution to resolve this equation. One solution could be a 
value of 4 for X and 2 for Y (4 + 2 = 6); another could be a value of 3 for both unknowns 
(3 + 3 = 6). To obtain a unique estimation for each of the unknowns it is necessary to 
impose restrictions: for example, let us set the value of X to 1.00, which allows us to 
obtain a unique value for Y, that is, 5, to resolve the equation.  

The identification also refers (and the above equation shows this) to  the number 
of free parameters (i.e., unknowns) with respect to the quantity of data available. 
Here, the data available to us are generally the variances and covariances of 
measured variables. The following formula makes it possible to calculate their 
number: k (k + 1)/2, where k is the number of observed variables. The problem that then 
arises is that of knowing whether we have enough information relative to the measured 
variables in order to estimate all the unknowns in the model. Three cases may emerge: 

– the model is just-identified. We speak of a “just-identified” or “saturated” 
model when the number of variances-covariances of the observed variables is equal 
to the number of free parameters in the specified model. With the number of the 
degrees of freedom being the difference between the first and the second (see [1.14], 
Chapter 1), a saturated model is a model with zero degrees of freedom. Although this 



Steps in Structural Equation Modeling     73 

fulfils the minimum condition for identifiability, such a model is only of limited 
scientific interest as it is never statistically rejectable; 

– the model is under-identified. A model is said to be under-identified when the 
number of variances-covariances of the measured variables is lower than the number 
of parameters to be estimated in the specified model. Such a model suffers from a 
deficit of information that is necessary to determine the value of each free 
parameter. Moreover, the negative number of degrees of freedom that it displays 
makes this model unacceptable. It is recommended that constraints (for example, 
setting one or more parameters to zero) should be introduced in order to identify 
such a model; 

– the model is over-identified. A model is said to be over-identified when the 
number of available variances-covariances is greater than the number of parameters 
to be estimated. Consequently, the number of degrees of freedom becomes positif, 
thus restoring to the model its heuristic character. In effect, contrary to the just-
identified model, an over-identified model is testable, even running the risk of being 
rejected. However, as essential as this over-identification is when it brings enough 
information to estimate the free parameters, it is also prone to affecting the overall 
evaluation of the model, as we then come up against the concept of parsimony, the 
details of which will be presented further on in the text. 

3.3. Models with observed variables (path models) 

Designed at the beginning of the 20th Century by the American geneticist Sewall 
Wright [WRI 21, WRI 34] to estimate and distinguish between hereditary effects 
across generations, path analysis was the forerunner of SEM. Along with 
informatization through means of the computerization of calculations and the 
confirmatory nature of the process, two advantages over multiple regression 
contributed to the development of path analysis: its multivariate approach (i.e. the 
possibility of processing several dependent variables simultaneously) and, most 
importantly, the possibility of decomposing the total effect of one variable over 
another into direct and indirect effects. The main characteristic, also being the main 
limitation, of these models is that they specify relationships between measured 
(observed) variables only. From such models arise the rather implausible hypothesis 
that the measures of the variables or constructs are free of measurement errors. 

Since Wright and the beginning of SEM, any reference to causality raises hackles 
even today among some purists, despite the precautions and clarifications brought in and 
repeatedly stated by Wright [WRI 21, WRI 60] himself, as well as by Duncan [DUN 66].  
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Remaining faithful to the spirit and the recommendations of these pioneers, we will 
continue to speak of “causal paths” or “causal effects”, which some prefer to call, as a 
precaution or to satisfy purists (a bad reason), “predictive path models” and “predictive 
effects”. Moreover, we will use them interchangeably here. Yet others prefer putting 
quotation marks around the designation, “causal paths” to highlight the strict significance 
(experimental) and to express the caution they wish to demonstrate. 

3.3.1. Identification of a path model  

This diagram is useful to understand the logic behind the identification of a path 
model and to comprehend its advantages. Let us take the model illustrated in Figure 
3.2. It can be seen that this model makes use of five measured variables, three of 
which are exogenous and correlated with each other (X1, X2 and X3) and two of 
which are endogenous, predicted (among others) by the first three. We can thus 
detect six causal paths (P1, P2, P3, P4, P5 and P6) indicating six different direct 
predictive effects: these are, respectively, the effect of X1on Y2, that of X2 on Y2, 
of X2 on Y1, of X3 on Y1, of X3 on Y2 and, finally, the influence of Y1 on Y2. We 
also discover two indirect predictive effects: that of X2 on Y2 via Y1, and that of X3 
on Y2 via Y1. We finally have the residual variables ‘e1’ and ‘e2’: the first 
represents the part of the variance in Y1 that cannot be imputed to X1, X2 or X3 and 
the second represents the part of the variance in Y2 that cannot be imputed to any of 
the variables. As it is next to impossible to be able to explain the entirety of the 
variance of a dependent variable, we introduce a residual variable “e”, which 
represents the effect of the variables that are not included in the model. Given that 
this residual variable is not directly observed but is derived from the equation, it will 
be placed in a circle and considered as a latent variable. A similar strategy is used 
for the error term in the regression analysis, the sources of fortuitous variations, that 
is, the proportion of variance that is not explained by the variables in the model.  

In reality, Figure 3.2 is incomplete even if it corresponds perfectly to the typical 
diagram of SEM that we may encounter in literature. In effect, certain authors 
require not only that residual variables be encircled, but also the variances (‘v’ in 
Figure 3.3) of all the exogenous variables be represented explicitly in the diagram as 
they consitute effective free parameters in a model. Figure 3.3 presents one such 
configuration. This presentation offers the advantage of revealing all the free 
parameters to be estimated. Indeed, each exogenous variable has a variance to be 
estimated. We can see that there are five of these, with two variances being linked to 
the residual variables (e1 and e2). These are, quite evidently, considered as 
exogenous variables as there is no arrow pointing towards them. Moreover, for 
practical reasons generally linked to the lack of space, these variances (or even the 
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residues) are often implicitly presented in the diagram, which makes model 
identification of the model all the more difficult for beginners. 

 

Figure 3.2. Path model relating five observed variables 

 

Figure 3.3. Path model relating five observed variables (the curved arrows  
with two heads represent variances and covariances/correlation) 

Is the model illustrated by figures 3.2 and 3.3 over-estimated and, therefore, apt 
to be estimated? To know this, let us calculate the number of its degrees of freedom 
(df) using the following equation (see Chapter 1 in this book): 

df = [k (k + 1)/2] – p  [3.1] 
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where 

– (k) = the number of observed variables; 

– (p) = the number of free parameters to be estimated. 

The model represented in Figure 3.3 has five measured variables and 16 
parameters, two of which are set to 1.00, in order to identify the model (this is 
because we are more interested in the variance of the residual “e” than its effect). 
The 14 free parameters indicated: 6 causal paths (P1 to P6) + three coviarances 
between the exogenous variables (denoted by an r on the graph) + five variances 
(denoted by the double-headed curved arrows with a (v)): 

df = [5(5 + 1)/2] – 14   

    = 15 – 14 

    = 1 

Notwithstanding the narrowness of this df, which poses parsimony problems in 
the model and which we will discuss further on, our model is over-identified and, 
therefore, ready to be estimated. 

3.3.2. Model specification using lavaan (step 2)2 

To specify a model is to retranscribe it for the software by using a syntax where 
operators are symbols. The retranscription concerns structural equations and the 
parameters that a model counts. Let us recall that there are as many equations as there 
are endogenous variables in the model; in an equation, there are as many terms as there 
are arrows directed towards the endogenous variable; and relationship between 
variables is expressed as linear function whose path coefficient  (P) is the value. For 
example, in the model illustrated by Figure 3.3, there are two endogenous variables 
(Y1 and Y2). Consequently, there are two equations: 

Y1 = X2 + X3 + e1 

Y2 = X1 + X2 + X3 + Y1 + e2 

 

                            
2 See Table 2.3.  
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A look at Figure 3.3 reveals that Y1, for example, has three incoming arrows: 
one from X2, another from X3 and the third from “e1”, this last being set to 1.00 in 
order at 1 in order to identify the model. 

Retranscribing the entire model in Figure 3.3 into lavaan syntax is startlingly 
simple. This is step 2, which follows data import. As stated, throughout this book, 
all models to be specified will be named “model.SPE” and all models to be 
estimated will be named “model.EST”. The data imported in step 1 (see the different 
steps for the use of lavaan, described in Table 2.3 in Chapter 2) will be called 
“BASE”. Let us recall that the tilde (~) is the operator required for the specification 
of regression models, including path models. We should also recall that the syntax 
that specifies a model must be placed between straight quotation marks (' ') and not 
the curved quotation marks usually used in typography (‘ ’). It will be seen that we 
use the symbol '<-' even though it is possible to replace it by the symbol '='. We 
finally highlight the fact that the presentation of each step as well as the comments 
that follow # are not part of the commands but are used to explain them or add 
observations. Here is an illustration of this: 

Step 2. Model specification (Figure 3.3). 
 
model.SPE <- 'Y1 ~ X2 + X3 
              Y2 ~ X1 + X2 + X3 + Y1' 

 

This syntax translates two regression equations. The first equation translates the 
regression of  Y1 on X2 and X3, while the second translates the regression of Y2 on 
X1, X2, X3 and Y1. We can note the absence, in this syntax, of the residual 
variables (e1 and e2) fixed automatically and by default at 1.00. Above all, we can 
note the absence of covariances between the exogenous variables, recognized by 
default by lavaan. To derogate from this, it is enough to ask for this in model 
specification.  

For example, if we wished to delete the correlation between X1 and X3, the lavaan 
syntax for this model would be as follows: 

STEP 2.  Specification of the model in Figure 3.3 without correlation between X1 
and X3. 
 
model.SPE <- 'Y1 ~ X2 + X3 
              Y2 ~ X1 + X2 + X3 + Y1 
              X1 ~~ 0* X3' # No correlation between X1 and X3. 
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Finally, it is possible to separate the specified equations (commands) using a 
semi-colon (;): 

 STEP 2. Model specification. 
 
model.SPE <- 'Y1 ~ X2 + X3; Y2 ~ X1 + X2 + X3 + Y1; X1 
~~ 0* X3' 

3.3.3. Direct and indirect effects 

Breaking down the total effect into two additive parts, the direct and the indirect 
effects, made it possible to arrive at a finer assessment of the relationships between 
variables. We talk about a “direct effect” (DE) when a variable directly predicts 
another variable. An oriented relationship in a diagram indicates the direction of this 
prediction, the value of which is its regression coefficient. It is easy, for any 
endogenous variable, to determine the number of direct effects acting on it. This 
number simply corresponds to the number of arrows pointing towards it. In other 
words, in a model there are as many direct effects as there are causal paths. An indirect 
effect (IE) comes about when a variable predicts another and when this second 
variable in turn predicts a third. We then assume that the first variable has an indirect 
predictive effect on the third, through the intermediary of the second variable. This 
example is the simplest form of mediation; it could, of course, be more complex. 

However, we cannot stop here in this decomposition as a close study of Figure 3.3 
reveals another source for effects. As this is neither direct nor indirect, it can be 
imputed to the covariances between the exogenous variables (X1, X2, X3) in the 
model. Indeed, it is clear that the interdependence between these variables comes 
into play each time that one of them is engaged in a direct relationship with another 
variable. This effect can be called the non-predictive effect (NPE) or even a spurious 
effect. Let us take the example of the relationship between X1 and Y2, which is 
expressed through the direct effect that the first has on the second, and also through 
the associations that X1 has with X2 and X3. 

The direct effect of one variable on another corresponds to the path coefficient 
that connects them. As we have seen, this is a regression coefficient, often estimated 
using the method of least squares or the method of maximum likelihood (which is 
almost the same thing, here). To return to the example presented in Figure 3.3, the 
indirect effect of X2 on Y2 corresponds to the product of the two path coefficients 
(p3 and p6). Thus, the total effect is the sum of all direct and/or indirect effects of 
the independent variable on the dependent variable. 
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In a path model, the decomposition of the correlation (or covariance) between 
two variables makes it possible to distinguish between the direct and the indirect 
effect of the independent variable (X) on the dependent variable (Y). This 
decomposition can be carried out using the following formula: 

rYX = Σq PYq rqX  [3.2] 

where: 

– q denotes all the variables in the model that have a direct relationship with the 
dependent variable Y; 

– PYq refers to the path coefficient that links a variable q to the variable Y.  

To apply this formula to the relationship between X2 and Y2, for example, in the 
model in Figure 3.3, we can proceed as follows. 

Identify all variables, q, that have a direct effect on the dependent variable Y2. In 
this case, we have X1, X2, X3 and Y1. 

Identify the path coefficients, PYq, corresponding to the relationships identified 
above. In this case, we have: p1, p2, p5 and p6. 

Multiply each of these coefficients by the correlation between X2 and each of the 
variables q. We obtain the following: 

p1rX2X1 

p2rX2X2 

p5rX2X3 

p6rX2Y1 

Upon adding the above products: 

rX2Y2 = p1rX2X1 + p2rX2X2 + p5rX2X3 + p6rX2Y [3.3] 

As rX2X2 = 1 (it is different for a covariance) and as rX2X1 as well as rX2X3 are 
stochastic relationships that cannot be decomposed, a single unknown, rX2Y1, 
remains to be resolved in [3.5]. In order to do this, we apply [3.4] with the steps that 
we just described. Thus: 

rX2Y1 = p3rX2X2 + p4rX2X3 [3.4] 

= p3 + p4rX2X3                  
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Finally, using [3.3] and [3.4] to resolve [3.2], we obtain the following: 

rX2Y2 = p1rX2X1 + p2 + p5rX2X3 + p6 (p3 + p4rX2X3) [3.5] 

= p1rX2X1 + p2 + p6 (p3 + p4 rX2X3) + p5rX2X3 

= p1rX2X1 + p2 + (p6*p3) + (p5*rX2X3) + (p6*p4*rX2X3) 

= DE + DE + IE + NPE + NPE 

While this is not complicated, the procedure that we just described does pose the 
risk, if it is manually computed for a complex model, of forgetting a path or a 
parameter. It is futile to describe more of this decomposition procedure as it can be 
carried out by most modeling software. We would, however, refer the reader to work 
by Bollen [BOL 87] and Sobel [SOB 87] for a more detailed discussion of this 
aspect of structural equation models. 

Finally, it would be useful to enphasize that mediation assumes the existence of a 
change. It assumes the existence of a causal mechanism that would explain this change; a 
mechanism through which a variable causes a change in another variable, which, in turn, 
causes a change in a third variable. If there is No change no mediation. As it is 
impossible to measure change through cross-sectional study, it would be more cautious 
to talk about an “indirect effect” than to talk about “mediation”. An indirect effect is a 
necessary, but not sufficient, characteristic of mediation. 

3.3.4. The statistical significance of indirect effects 

Direct effects (i.e., path coefficients) significance tests are available, however, it 
becomes all the more necessary to use complementary tests to judge the significance 
of indirect effects [SOB 87]. Several procedures were proposed to evaluate the 
mediation effect (the indirect effect) of a variable [MAC 08, MAC 02]. There is the 
“causal” steps procedure proposed by Baron and Kenny [BAR 986], that of the 
product of coefficients, the distribution of the product of two random variables or 
again, the bootstrap procedure. Contrary to the other procedures, bootstrapping 
neither requires a normal, multivariate distribution, nor a large sample. MacKinnon, 
Lockwood and Williams [MAC 04] estimate that it produced results (confidence 
intervals) that are more precise than those from other procedures. This procedure is 
based on a simple principle [MAC 08]. A certain number of samples (fixed by the 
researcher; for example: “bootstrap = 1000”) are randomly generated with 
replacement starting from the initial sample considered, like the population. Each 
generated sample contains the same number of observations as the initial sample. 
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There will then be as many estimations of the model as there are generated samples. 
The mean of each parameter estimate is computed and accompanied by its 
confidence interval (CI). An estimation (the indirect effect, for example) is 
significant at 0.05 if its confidence interval at 95% (95% CI) does not include a null 
value (see [PRE 08a]). 

It is important to note that a serious limitation of lavaan is that it does not 
automatically compute the indirect effects and the total effect. In order to obtain 
these effects, a rather convoluted process must be used. We begin by naming the 
different causal paths (for example, p1, p2, p3, etc.) and we then use the operator 
“:=” to estimate the indirect effects. Here is an illustration of this for the model 3.3. 
in which there are four direct effects (labeled p1, p2, p5, p6) and two indirect effects 
(labeled p3 and p4) on the ultimate endogenous variable Y2: 

STEP 2. Model specification. 
 
model.SPE <- 'Y1 ~ p3*X2 + p4*X3 
 
# Specify the four direct effects. 
 
 Y2 ~ p1*X1 + p2*X2 + p5*X3 + p6*Y1 
 
# Specify the two indirect effects. 
 
p3p6:= p3*p6 
p4p6:= p4*p6 
 
# Specify the total effect 
 
total:= p1 + p2 + p5 + p6 + (p3*p6) + (p4*p6)' 

 

The bootstrapping procedure is carried out during the step of model estimation 
(step 3). 

3.3.5. Model estimation with lavaan (step 3) 

lavaan offers three model-fitting functions: (1) “sem” (for structural equation 
modeling) to estimate path models and general structrural equation models; (2) “cfa” 
(for confirmatory factor analysis) to estimate measurement models; (3) “growth” to 
estimate latent growth models. 
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The parentheses that follow the selected model-fitting function –“sem ( )”,  
“cfa ( )”, growth ( )” – must compulsorily contain the name of the model specified in 
step 2 as well as the file with data named in step 1 “data = xxx”. When needed, we 
can insert other options such as “ordered = c ( )”, to indicate, between parentheses, 
the binary or ordinal variables in the model; “orthogonal = TRUE” to estimate a 
measurement model (CFA) whose factors are not correlated with each other; “se = 
"bootstrap"” to obtain the confidence interval for the parameter estimates for the 
parameters at the end of 1000 resampling procedure (bootstrap = 1,000). The results 
of the bootstrap operation will be interpreted further in the chapter. 

STEP 3. Model estimation using the the model-fitting function “SEM”. 
 
model.EST <- sem (model.SPE, data = BASE, se = 
"bootstrap", bootstrap =1000) 
 
STEP 4. Retrieving of the results of the estimated model. 
 
summary (model.EST, fit.measures = TRUE,  
standardized = TRUE, modindices = TRUE, rsq = TRUE) 

3.3.6. Model evaluation3 (step 4) 

The evaluation of the estimated model is carried out by examining the solution or 
the output, the results yielded by lavaan. The content of these results depends on the 
elements in the “summary” function brought in step 4, which is relative to the 
retrieving of the results of the estimated model. For example, the elements within 
parentheses after “summary” request the results of the estimated model, named 
“model.EST” by providing goodness-of-fit indices (fit.measures = TRUE), the 
standardized estimates (standardized = TRUE), the modification indices 
(modindices = TRUE), as well as R² for the endogenous variables (rsq = TRUE). 

Let us recall here that the evaluation of a solution must be carried out with 
respect to both three aspects: 1) the overall model fit; 2) the quality of the solution  
and the location of areas of potential weakness and misfit; and 3) local fit indices of 
the solution (i.e., parameter estimates). 

                            
3 In order to do away with exponential notations in the results, it is enough to introduce the 
following command: “> options (scipen = 999)” and to then launch the “summary” instruction 
described earlier. For example, p = 8,083672e – 23 becomes: p = 0,000000000000 
00000000008083672. 
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We can easily see that the only difference between diagrams (a) and (c) in Figure 
3.4 is at the level of the relationship between the variables Y1 and Y2; this is a 
unidirectional relationship, going from the second to the first, in the diagram (a), and 
bidirectional (that is, reciprocal) in diagram (c). We can also observe that unlike a 
covariance relationship – between X1 and X2, for instance – this reciprocity is 
reflected by two distinct paths, one expressing the influence of Y1 on Y1 and the other 
expressing the reverse influence. This model could be particularly useful in 
determining the direction of prediction and evaluating opposing approaches, such as 
the bottom-up versus top-down, that we encounter in various fields of study  
[WON 99]. Nonetheless, from a conceptual point of view, the causal reciprocity is 
debatable as it hypothesizes a complete absence of temporal precedence between the 
cause and the effect. The simultaneity of the effects of two variables on one another 
does away with the principle of existence of a certain amount of time that is necessary 
for the production of any causal effect. Any causal relationship requires an interval of 
time, however infinitesimal, for producing the causal effect. Thus, can one variable be 
the cause of a second which itself is the cause for the first? Has the causal effect 
already come into play in order to produce an immediate retroactive effect? It is 
reasonable to question this. 

Causal reciprocity is not the only type of non-recursive effect; the feedback loop, 
illustrated in Figure 3.4b is another type. In this model, a loop is formed between 
Y2, Y1 and Y3: the first variable influences the second, which influences the third, 
which, in turn, influences the first. Another type of non-recursive effect, illustrated 
in Figure 3.4d is expressed in a model through the correlation between residual 
variables. However, not all researchers agree on the non-recursiveness of a case like 
this [RIG 95]. Moreover, there is no non-recursiveness when the endogenous 
variables with which the residual variables are correlated have no links between 
themselves. Such a model may, at most, be considered as being partially recursive.  

Its limitations notwithstanding, non-recursiveness adds a dimension to path 
analysis that makes it a remarkable method, posing a serious challenge to multiple 
regression analysis. The reader may observe and be rightfully surprised that these 
models are not very frequently mentioned in literature. They will know that these 
models often encounter identification problems, thereby making it impossible to 
estimate them. These problems come about even when the number of variances-
covariances is greater than the number of free parameters in the model. As this 
condition is necessary but not sufficient, other conditions are thus required here: 
order condition and rank condition. In Bekker [BEK 94], Kaplan, Harik and 
Hotchkiss [KAP 01], and Wong and Law [WON 99] readers can discover technical 
details and in Kline [KLI 16] and Maruyama [MAR 98] they can find practical 
illustrations. And even when all these conditions are satisfied, it may be that the 
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model is empirically under-identified. Multicollinearity may be the cause of this or, 
similarly, it may be a path coefficient that is close to zero and whose virtual absence 
affect condition rank of the concerned variables. 

The possibilities that non-recursiveness offers must not lead us to forget the 
hidden risks, especially that of using it to shirk or camouflage theoretical 
weaknesses related to the direction of the predictive effects in the model that in the 
specified model. Given that in cases of theoretical doubt it is tempting to propose 
bidirectional relationships between variables, it would be useful not to give in to the 
ease of doing this.  

You can find below the specification, in lavaan syntax, of the non-recursive 
model from Figure 3.4c: 

STEP 2. Model specification (non-recursive, Figure 3.4c)  
model.SPE <- 'Y1 ~ X1 + X2 + Y2 
              Y2 ~ X2 + Y1 
              Y3 ~ X1 + X2 + Y1 + Y2' 

3.3.8. Illustration of a path analysis model  

3.3.8.1. A brief introduction to the theoretical model 

A simple model is presented below as an illustration. It is taken from a study 
carried out on the role of aging self-stereotypes (i.e., aging self-perceptions: the 
cognitions  that an individual holds about him or herself as an aging person) among 
the elderly.  

The authors of this study proposed testing a model that brought into play the 
relationships between psychological resources (self-esteem, dispositional optimism) 
and aging self-sterotypes and physical health among the elderly (N=331). This was a 
hypothetical model based in the socio-cognitive model of stereotypes and the 
conceptual framework of positive psychology, which postulates that positive emotions 
traits protect physical health A self-stereotype may be defined as a cognitive process 
through which individuals belonging to a social group tend to perceive themselves 
with positive and negative stereotypical traits and characteristics of the in-group. This 
may serve as a kind of cognitive filter that acts upon one’s way of thinking, being and 
acting. Aging self-stereotypes are thus stereotypes integrated by the elderly, which 
were developed by society with respect to their social group. For example, in negative 
self-stereotyping, the elderly attribute terms such as “decline”, “illness” and “senility” 
to themselves and see themselves as being a population “with problems” and that is 
“dependent”.  
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As illustrated in Figure 3.5, this model hypothesizes the total  mediation of aging 
self-sterotypes of age between psychological resources and objective (i.e. physical) 
health. It reflects the hypotheses according to which a person’s psychological 
resources influence their aging self-stereotypes. Which in turn influence their 
physical health. 

 

Figure 3.5. Path model (the curved arrows with two head represent variances  
and covariances/correlations) 

We can see that the model calls upon four observed measured variables with two 
exogenous variables correlated with each other. These variables refer to two positive 
resources. The first was self-esteem, measured using Rosenberg’s self-esteem scale 
[ROS 65], where a high score indicates high self-esteem; the second is dispositional 
optimism measured through the life orientation test [SCH 94], where a high score is 
indicative of a high level of optimism. Measured using two items, “physical health” is 
the ultimate endogenous variable, whose R² makes it possible to show the part of 
variation due to all variables that preceded it in the model. A high score is indicative of 
poor physical health. Between the two exogenous variables and the ultimate 
endogenous variable we can find the second, mediator endogenous variable related to 
aging self-stereotypes, measured through a five-item scale proposed by Levy, Slade, 
Kunkel et al. [LEV 02], where higher score indicates a high level of negative self-
stereotypes, that is a negative perception of one’s own aging. 

This is a recursive model whose hypothesis of total mediation is reflected in the 
diagram by the fact that the exogenous variables have no direct influence on the 
ultimate endogenous variable (health). Their influence on this variable is mediated by 
the aging self-stereotypes (for more technical details on mediation, see [MAC 08]). 
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3.3.8.2. Specifying the model in lavaan syntax 

The model represented in Figure 3.4 contains three causal paths, labeled “p1”, 
“p2”, and “p3”. As we have seen, it has two endogenous variables, thus leading to 
two equations as well as an indirect effect leading to a specification. This is the 
product of the effects of the three causal path p1, p2 and p3, which will be notified 
to lavaan in order to obtain its value. Let us recall that by default lavaan correlates 
the exogenous variables of the model. 

STEP 2. Model specification. 

model.SPE <- 'stereotype ~ p1*esteem + p2*optimism 
health ~ p3*stereotype 

# Specify the indirect effect. 

Indirect:= p1*p2*p3' 

STEP 3. Using the model-fitting function “SEM”. 

model.EST <- sem (model.SPE, data = BASE) 

STEP 4. Retrieving the results (solution) of the estimated model. 

summary (model.EST, fit.measures = TRUE,  
standardized = TRUE, modindices = TRUE, rsq = TRUE) 

 
Upon studying model.SPE, we can see that the first equation translates the 

hypothesis that the variable “stereotype” is influenced by predictive effects from the 
variables “esteem” (“p1” is the label assigned to this parameter) and “optimism” 
(“p2” is the label assigned to this parameter). The second equation translates the 
hypothesis that the objective health “health” is subject to the predictive effect of the 
variable “stereotype” (“p3” is the label assigned to this parameter). It was necessary 
to use an asterisk to name the parameters (the direct effects) in order to calculate the 
indirect effect, which is the product of all direct effects (p1, p2 and p3). Here, we 
can specify the indirect effect of self-esteem on health (p1*p3) and/or that of 
optimism on health (p2*p3). 

3.3.8.3. Evaluation of the solution (model evaluation) 

The estimation of the model whose solution we will evaluate was done through the 
method of maximum likelihood, which is the default estimator in lavaan. We will 
examine the overall model fit, the quality of the solution (proper vs. improper solution) 
and the identification of possible zones of weaknesses, as well as the local fit indices of 
the solution. 



88     Structural Equation Modeling with lavaan 

The output of the solution is given in its minimal, summarized form in Table 3.1. 
We can see that these results can be broken down into two parts. The first displays 
overall goodness-of-fit indices, while the second offers local fit indices of the 
solution, including the option of the modification indices, if necessary. Before 
examining the contents of each in detail, we can observe that the solution has 
converged normally after 16 iterations. The solution seems to be proper.  

3.3.8.3.1. The overall goodness-of-fit indices  

Going by the statistically significant value of χ² (2, N = 331) = 6.48, p = 0.039, 
the harmony between the model and the data is not perfect. However, the sensitivity 
of this statistical test to sample size is too well-known to completely trust it. Indeed, 
the other fit indices, such as the CFI (0.971), the TLI (0.929) as well as the SRMR 
(0.036) argue in favor of the theoretical model subject to estimation. However, the 
rather small number of df (=2) could feed the implicit suspicion that this good fitting 
model could be due more to its lack of parsimony than to its underlying theoretical 
substratum that it represents. Indeed, the value of RMSEA (0.082), which contains 
the advantage of penalizing the lack of parsimony, supports this suspicion. The 
suspicion is further reinforced when we examine the higher limit of the confidence 
interval  of the RMSEA whose value (0.157) goes beyond 0.100. 

 

Table 3.1a. Goodness-of-fit indices for the mediation model (Figure 3.5) 
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3.3.8.3.2. Local fit indices of the solution 

A study of these indices, presented in the second part of the output (see Table 
3.1b) makes it possible, first of all, to ensure that we get a proper solution. It can be 
verified (see the column “Estimate”) that this contains no inadmissible parameter 
estimates (for example, in “Variance”, a negative variance, called the Heywood 
case). And since the acceptability of the model is not doubted, we can proceed to the 
reading of its results. 

Table 3.1b shows that the value of the three path coefficients have proven to be 
statistically significant. Let us specify here that the column “Estimate” gives the 
non-standardized coefficients, the column “P (>|z|)” gives the p-value and the 
column “Std. all” displays the standardized coefficients. We can thus note that the 
predictive effects of self-esteem (β = – 0.289, p = 0.000) and of optimism (β =  
– 0.355, p = 0.000) on aging self-stereotypes are negative, indicating that the higher 
the self-esteem and the more optimistic a person is, the less likely they will be to 
hold negative aging self-sterotypes related to aging. As for the effect of these self-
stereotypes on physical health, it is positive (β = 0.353, p = 0.000), indicating that 
the more one holds negative aging self-perceptions, of age the poorer their physical 
health will be. 

Although quite a weak effect [KLI 16], the indirect effect (mediation) of 
psychological resources on physical health has also proven to be statistically 
significant (0.036, p = 0.000). 

On studying the squared multiple correlations (R², R-square) obtained for each 
endogenous variable, it can be noted that the share of variance of aging self-
stereotypes that can be attributed to the set of predictive variables is almost 29%  
(R² = 0.286), while it is only around 13% as regards physical health (R² = 0.125). 

Finally, the modification indices (the column “mi” in the spread shown in Table 
3.1b) suggest two modifications in nature that could improve model fit:  
1) modification 12 (Health ~ esteem), which introduce the effect of self-esteem on 
health and make it possible to reduce the χ² value by 5.782 points; 2) 
modification 15 (Health ~ esteem), which introduces the effect of health on self-
esteem and makes it possible to reduce the χ² value by 6.406. The first modification 
is as plausible as the second is impossible. This is because an exogenous variable 
(esteem) cannot be subject to any predictive effect. Let us specify here that any 
modification introduces an additional parameter to be estimated in the model, thus 
reducing the degrees of freedom by one point. Nonetheless, it is essential that the 
decrease in the χ² value be ≥ 3.84 for a df = 1 in order that it may be considered as 
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significant at p < 0.05, and ≥ 6.63 for a df = 1 in order that it may be considered 
significant at p < 0.01 (refer to a table for χ² values). 

 

 Table 3.1b. Local indices of the solution (contd.) 

3.4. Actor-partner interdependence model  

The model known as the Actor-Partner Interdependence Model (APIM) and 
popularized by Kenny, Kashy and Cook [KEN 06], is applied to dyadic data and is 
both non-recursive and just-identified (saturated). Figure 3.6 offers a graphic 
representation of this. 

Non-recursive as it contains a correlation between the residual variables (e1 and e2), 
signifying the non-independence of the parts of the variance that are not explained by 
the variables in the model. 

Just-identified as its df = zero. Indeed, there are as many variances-covariances 
(4*5/2 * 10) = 1, as there are parameters that are free to be estimated, namely four 
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causal paths (a2, a1, p2) p2), two covariances, four variances (for a total of 10 
parameters).  

 

Figure 3.6. APIM model (the curved double arrows represent 
the variances and covariances/correlations) 

What is expected from this model is not how well it fits the data, but the 
significance of the predictive effects that it hypothesizes. We can distinguish 
between two types of effects: the actor effects, which refer to intra-partner effects 
(for example, path “a1” refers to the effect that the husband’s depression has on his 
own marital satisfaction) and partner effects, which are the inter-partner effects (for 
example, the path “p1” refers to the effect the husband’s depression has on his 
wife’s marital satisfaction). 

If we wish to test the equivalence of these two effects within the dyad, simply 
constrain them to be equal them to be equal. Constraining paths a1 and a2 to be 
equal makes it possible to test the equivalence of intra-partner effects, while 
constraining p1 and p2 to be equal makes it possible to evaluate the equivalence of 
the inter-partner effects. Constraints of this kind make the model over-identified, 
with either a df=1, if the equality has a bearing on a single effect (intra versus inter), 
or a df=2 if the equality concerns all the effects (intra and inter). In both cases, a 
significant χ² indicates a significant difference between the effects. For example, the 
effect of a husband's depression on the marital satisfaction of his wife may be 
stronger than the effect of the wife's depression on the marital satisfaction of her 
husband. 

Moreover, the APIM also depends on the type of the present dyad. According to 
Kenny, Kashy and Cook [KEN 06] there are two types of dyads: the dyad where both 
the two members are distinguishable (for example, a heterosexual couple) and a dyad 



92     Structural Equation Modeling with lavaan 

where the two members are indistinguishable (for example, a homosexual couple). 
The analysis of indistinguishable dyads is related to intraclass correlations. Gonzalez 
and Griffin [GON 99] proposed a test to determine empirically if  dyad members  are 
distinguishable. Our illustration here focuses on dyads the two members are 
distinguishable. 

3.4.1. Specifying and estimating an APIM with lavaan  

We present three steps (model spectification, model estimation, and retreiving 
the model solution, see Table 2.3) to test two APIMs: one that has no constraint for 
equality and the other with a constraint for equality of inter-partner effects.  

The model establishes a dyadic relationship between marital satisfaction 
("husbsatis", "wifesatis") and depression ("husbdep", "wifedep"). 

STEP 2. Specification of the APIM model (by default, lavaan correlates the 
measured exogenous variables). 

model.SPE <- 'husbsatis ~ husbdep + wifedep 
             wifesatis ~ wifedep + husbdep 
            husbsatis ~~ wifesatis' # Correlation 
between e1 and e2. 
 
STEP 3. Estimating the APIM. 

model.EST <- sem (model.SPE, data = BASE) 
 
STEP 4. Retrieving the results of the APIM. 

summary (model.EST, standardized = TRUE) 

This syntax is used to translate the two equations of the model: 1) "husbsatis" is 
subject to the effets of "wifedep" and "husbdep"; 2) "wifesatis" is "subject to  the 
effets of "wifedep" and "husbdep". We can note that by default lavaan will include 
the error terms "e1" and "e2" whose correlation was specified by using the double 
tilde (~~). Let us clarify here that when we specify a correlation between two 
endogenous variables (in this case, "husbsatis" and "wifesatis"), it is a correlation of 
their error terms that we specify as endogenous variables can never be correlated 
between themselves. Let us recall again that in SEM, only exogenous variables 
(whether manifest or latent) can be correlated between themselves, but this can 
never be the case with endogenous variables.  
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3.4.2. Evaluation of the solution 

The solution presented in Table 3.2 is divided into two parts. The first encloses the 
first five lines indicating that convergence has occurred without any problem, that the 
sample contains 198 dyads (note that the couple is the unit of analysis), that the 
estimator, used is the maximum likelihood (ML)  and, finally, that we are in the presence 
of a saturated model (dfχ = 0). The second part presents the estimation of the model’s 
parameters, in this case, the four causal paths (reported  in “regressions” section of the 
output) that are all statistic significant (see the column “p (>|z|)” and “Std.all” for the 
standardized estimations.  

Indeed, it can be noted that the two actor effects are significant: the depression in the 
man negatively predicts his own marital satisfaction (β = – 0.426) and, similarly, for the 
woman, her depression negatively predicts her own marital satisfaction (β = – 0.287). As 
for partner effects: one person's depression negatively predicts the marital satisfaction of 
the other; the man's depression → marital satisfaction of the woman, β = – 0.252; the 
woman's depression → marital satisfaction of the man, β = – 0.165. We can also note 
that despite lavaan correlating the exogenous variables by default (that is, “husbdep”, 
“wifedep”) it still does not provide an automatic result for this. The displayed in 
“Covariances” section is that of the residual variables (36.578). 

 

Table 3.2. Lavaan output of the APIM 
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One would be legitimate in now questioning the equivalence of the actor/partner 
effects within the dyads. For example, we would like to know whether the effect  of 
the woman's depression on her spouse's marital satisfaction is stronger than the 
effect of the man's depression on his spouse's marital satisfaction. In order to find 
the answer, it is enough to constrain these two effects to be equal and to measure the 
impact this has on the model fit. If this equality leads to a deterioration in the model 
fit, it can be concluded that the two effects are different. Here is an illustration of 
this, using the APIM discussed above.  

In order to constrain the parameters to be equal, their label must be specified when 
the model is specified and the desired constraint(s) should be added to the syntax at 
this stage.  

STEP 2. Specifying and labeling parameters for the APIM model.  
 
model.SPE<- 'husbsatis ~ a1*husbdep + p2*wifedep 
             wifesatis ~ a2*wifedep + p1*husbdep 
             husbsatis ~~ wifedep 
              p1 == p2'       # Constraining two paths 
(effects) to be equal. 
 
STEP 3. Estimating the APIM. 
 
model.EST<- sem (model.SPE, data = BASE) 
 
STEP 4. Retrieving the results of the APIM. 
 
summary (model.EST, standardized = TRUE) 

3.4.3. Evaluating the APIM re-specified with equality constraints 

The equality constraint  that was imposed (see p1 – (p2) in “Constraints” section 
of the output), allowed the model to go from saturation (df= 0) to over-identification, 
as is proven by the degrees of freedom, whose number is now 1.00, for a χ² value of 
0.566 (see Table 3.3). Is this value enough to deteriorate the model fit? As presented 
above, referring to a χ² value the table shows us that for 1 df, a value of at least 3.84 
is needed in order to hope for significance at p < 0.05. Thus, a χ² (1) = 0.566,  
p = 0.456, which is not significant at p < 0,05, thus indicates that the equality 
constraint did not significantly worsen the model fit; and hence the two effects can 
be considered as being similar (-0.204 and - 0.212). Moreover, the “Slack value”  
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(in “Constraints” section of the output) which signifies the difference between p1 
and p2, is zero (0.000). 

 

Table 3.3. Results of the APIM with equality constraints 

3.5. Models with latent variables (measurement models and structural 
models) 

If the available data and the sample size allow, the researcher could covert the 
path model in Figure 3.5 into a model with latent variables. It would, thus, take the 
form presented in Figure 3.7, where it can be seen that each of the latent variables is 
measured by a certain number (here, arbitrarily fixed) of observed variables 
(indicators/items). These, as well as the endogenous latent variables, are 
accompanied by residual variables (“e”, “E”). Similar to the graph in Figure 1.9 
presented in Chapter 1, the graph in Figure 3.7 represents what may be called a 
“general structural equation model”. 



96     Stru

(the dou

Let u
the under
following
different 
variables
the latter
between 
variables
of structu
Both thes
in greater

Fig
gener

 

uctural Equation

Figure 3.7. G
uble curved ar

aster

us spend a little
rlying structure
g figures illust
measurement

s and the latent
r. Figure 3.8b r

the latent var
s (path models
ural equation m
se constituent 
r detail.  

ure 3.8a. The
ral structural e

n Modeling with 

General struct
rrows represen
risk denotes a

e longer studyi
e. This diagram
trate this break
t models that 
t variables, thu
represents a str
riables, but it 
: refer to Figur
modeling. They
components o

e three measur
equation mode

c = uni

lavaan 

tural equation 
nt the variance
a free paramet

ing Figure 3.7. 
m is, in effect, 
king-down of 
deal with the

us indicating ho
ructural model
can also be 

re 3.5). These 
y may be inter
f SEM are fun

rement model
el in Figure 3.7
idimensional m

model with la
es and covaria
ter to be estim

It is enough to
made up of fo
the figure: Fig

e relationships
ow the former 
l that only dea
applied exclu
two models ar

rconnected or m
ndamental and 

ls (a, b, and c)
7 (a = bidimen
models) 

tent variables 
ances/correlat

mated) 

o break it dow
our connected p
gure 3.8a repre
s between the 

can be used to
als with the rela
usively to the 
re the basic co
may be used s
deserve to be 

) that make up
nsional model;

 

tions; the 

wn to grasp 
parts. The 
esents the 
observed 

o measure 
ationships 
measured 

omponents 
separately. 
discussed 

 

p the  
; b and  



Figu

3.5.1. T

In SE
(CFA), w
first vers
structure
construc
beginner
CFA and

The m
main ob
precision
measurem
a measur
instrume
total me
score/ab
whose eq

Acco
dependen
attribute
reliabilit

 

ure 3.8b. In bo

The measure

EM, a measur
which has bee
sion of the LI
e of a set of
ct. This involv
r can refer to
d can refer to B

measurement 
bjective of th
n with which
ment of a con
rement error. 

ent is never th
asured score. 
ility and mea
quation is: Ob

ording to this
nt both on t
s) represented
ty of a score in

old, the structu

ement mode

rement model
en quite famo
ISREL softwa
f indicators (
ves testing hyp
o Mueller [MU
Brown [BRO

model in used
his theory is 
h the model 
nstruct is neve

Thus, the obs
he true score (

That is, it is
surement erro
served Score (

s theory, eve
the influence
d by the ind
ncreases as its

Ste

ural portion of 

el or Confirm

l is equated to
ous ever since
are. Here, the 
for example, 
potheses arou
UE 96] for a
15] for more 

d in SEM is b
to evaluate s
is able to m

er precise, nev
served score (
TS) – the true

s an additive c
or (random er
(OS) = True S

ery score for 
s of the true

dicator, and o
s measuremen

eps in Structura

f the model in 

matory Facto

o the Confirm
e Jöreskog [JÖ
confirmation
the items) s

und a structure
an accessible 
practical exam

based on the T
score reliabili
measure a con
ver perfect, be
(OS) obtained
e ability, whic
composite of 

rror). Figure 3
core (TS) + M

an indicator
e score on th
on the measu
nt error approa

al Equation Mod

Figure 3.7 (co

or Analysis 

matory Factor 
ÖR 73] introd
 covers the un
selected to m
e specified a 
technical ove

mples of appli

True Score The
ity. This refe
nstruct. How

ecause it alway
d using a mea
ch is unkown 

two compone
3.9 presents th

Measurement E

r (i.e. for an 
he construct 

urement error 
aches zero. 

deling     97 

 

ontd.) 

 

Analysis  
duced the 
nderlying 

measure a 
priori. A 

erview of 
ication.  

eory. The 
ers to the 

wever, the 
ys carries 

asurement 
– but is a 
ents: true 
his model 
Error (e). 

item) is 
(for e.g. 
(e). The 



98     Structural Equation Modeling with lavaan 

 

Figure 3.9. Measurement model for the true score theory 

In other terms, the variance of an observed score is always equal to the sum of the 
variance of the true score and the variance of the measurement error. In reality, while 
the measurement error is made up of two additive parts, they are difficult to estimate 
separately. They are: random error (chance) and systematic error. At the empirical 
level, the sources of random errors are the various personal influences, such as the 
psychological state of the participant, their motivation, their sloppy reading of the 
items, their mood, or again, their concentration level when the test is administered. All 
these contribute to varying their responses on the proposed item. As concerns 
systematic errors, they refer to factors that are extrinsic to the participants, such as the 
measurement methods (self-reporting, hetero-evaluation) that can systematically 
introduce a bias in the responses of all respondents (for example, the “method 
effect”)5. At the statistical level, a random error does not affect the mean score of a 
sample, but does affect the variability (distribution) of the scores around the mean. 
However, in the case of a systematic error it is quite different. This error seriously 
affects a population's mean score and biases the real perception of the phenomenon 
being studied. Such a bias compromises, for instance, the unidimensional nature of the 
construct whose item is the representative.  

It is clear that these two kinds of error provide information on two different but 
complementary properties. One is precision (reliability), which is reflected in the 
amplitude of the random errors around the real score; the other is the accuracy of a 
measure (validity), which results from the absence of systematic errors in the 
                            
5 The reader will find an example of the method effect in [GAN 13]. 
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An examination of the diagram in Figure 3.15 shows five dependent variables  
(in this case they are items). We can see that each item is subject to two influences, 
one being the common factor (F) and the other being a unique factor (measurement 
error (e)). We thus obtain the following equations: 

item 1 = F + e1 

item 2 = F + e2 

item 3 = 1*F + e3 

item 4 = F + e4 

item 5 = F + e5 

The effect of the common factor reflects the factorial weight (B/β) and indicates 
the validity of the selected item. It is, thus, a construct validity coefficient.  
When squared, it represents that part of the variance that can be imputed to the 
common factor, that is, the construct. As concerns the effect of the unique factor, it 
represents the unique variance (uniqueness = an undistinguishable combination of 
specific factor and measurement error variance) in each item not explained by the 
common factor. The smaller the measurement error, the more reliable the item. In 
effect, when all the variance of an item is due to measurement error, this item cannot 
be a good indicator of the factor on which it is assumed to depend. It is clear that the 
smaller the measurement error, the more we tend towards factorial purity.  

3.5.1.1.1. Identification of a measurement model 

Among the required conditions for identifying a measurement model, there are 
two primordial conditions: having a sufficient number of indicators for the latent 
variable and defining the metric for this latent variable.  

The first condition concerns the number of indicators per factor. Let us recall, 
here, that an indicator designates an item or again a measured/manifest variable. In 
order for a measurement model to be identified, it is important for the latent variable 
to have at least four indicators (for example: four items). In effect, with only three 
indicators, the measurement model is just-identified, thus making useless its 
testability.  

The second condition relates to the metric for the latent variables. Because it is not 
measured, a latent variable clearly has no metric. It is thus up to the researcher to 
define the metric of this variable. There are two possible ways of doing this: one, they 
can set the variance of the latent variable to 1.00; otherwise, one parameter (i.e.; factor 
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loading) relating the latent variable with an item can be set to 1.00, allowing this latent 
variable to then capture the metric of the selected item. This item will be used as a sort 
of reference indicator for scaling the latent variable. In effect, it is recommended that 
among the indicators designed to measure a construct, we choose the indicator that is 
the most representative, whose meaning approximates it the best. The object here is to 
offer readers a clear understanding of the construct being studied. For example, item 3, 
“I am satisfied with my life”, could fulfill this purpose. Its perfect analogy with the 
construct of “life satisfaction” makes it a good reference indicator. By fixing the 
parameter of the reference indicator at 1.00 it can transmit its metric onto the latent 
variable. Following that a correspondence is set up between the two. Once the 
reference indicator is specified, a part of its variance will be transmitted to the latent 
variable for which it serves as the reference. We will examine the mathematical 
procedure in detail when we look at the results of the solution and, precisely, the 
variance of the latent variable.  

What are the considerations that could guide the choice of these possibilities? It 
is clear that in the case of a CFA, using one or the other of these two options does 
not in any way affect the results of the analysis. On the other hand, it is not possible 
to fix the variance of the latent endogenous variables within a general structural 
equation model. To guarantee their metric, its imperative to set to 1.00 an observed 
measure/item on each latent variable as reference indicator. However, in both cases 
there may be theoretical and epistemological considerations that come in.  

3.5.1.1.2. Model specification in lavaan syntax.  

Let us recall that the “equal to” symbol followed by a tilde (=~) is the operator 
that is necessary for specifying a latent variable (see Table 2.2, Chapter 2). Let us 
also recall that the syntax specifying a model must be placed within simple, straight 
quotation marks (' ') and not the typographical quotation marks (‘ ’). 

STEP 2. Specification of the measurement model in Figure 3.10. 

model.SPE <- 'LS =~ item3 + item1 + item2 + item4 + 
item5' 

STEP 3. Model estimation using the model-fitting function "cfa" (confirmatory 
factor analysis) and robust estimator "MLR" 

model.EST <-cfa (model.SPE, data = BASE, estimator = 
"MLR") 

STEP 4. Result retrieving 

summary (model.EST, fit.measures = TRUE,  
standardized = TRUE, rsq = TRUE, modindices = TRUE) 
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# Calculating the reliability coefficients (with semTools). 
 
library(semTools) 
reliability (model.EST) 

 
Here, the above syntax translates the hypothetical model according to which LS 

(the arbitrary name given here) is a latent variable defined by the indicators: item1, 
item2, item3, item4 and item5. Let us recall that lavaan, by default, fixes at 1.00 the 
factor loading of the first item included in the equation at 1.00. Thus, to define the 
metric of the latent variable and identify the model, it is enough to place the 
reference indicator at the beginning of the equation, in this case item 3 ("I am 
satisfied with my life") of the life satisfaction scale (see Table 1.2, Chapter 1). 

If we wish to identify the measurement model by setting the variance of the 
latent variable to 1.00, it is enough to free the constraint weighing upon the factor 
loading of the first item in the model specification:  

model.SPE <- 'LS =~ NA*item3 + item1 + item2 + item4 + item5' 

3.5.1.1.3. Model estimation 

The model estimation syntax begins with indicating the fitting function "cfa" and 
continues with the choice of an appropriate estimator, which depends, as we have 
seen, on the sample size, the type of data and especially its multivariate normality. 
We will assess this using Mardia test (1970). In order to do this, we must use the 
package "semTools", which should be installed beforehand. This must then be 
opened and used to calculate the Mardia test. Here is an illustration, using the 
responses of 137 participants (N = 137) to five items of the life satisfaction scale. 

 

Table 3.4. The script and results of the Mardia test  
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After having imported the data called "BASE" (an overview of this can be seen 
by using the command "head (BASE)"), and after having launched "semTools" 
(library (semTools)) we run the calculation of the Mardia test "mardiaKurtosis 
(BASE)". In order to simplify the reading of the results and avoid the exponential 
notations found here, the number of digits after the decimal point was fixed to 3, 
"round (MARDIA, 3)".  

The last line of the output (Table 3.4) provides the Mardia coefficients: the value 
40,058 refers to the multivariate kurtosis coefficient (kurtosis = b2d), while the value 
9.833 refers to the standardized multivariate kurtosis coefficient (z-score) accompanied 
by its p-value (p). It can be noted that not only is this standardized coefficient statistically 
significant, but its value is greater than 5, which is the threshold value beyond which 
multivariate normality seems to fail [KLI 16].  

This observation suggests to us that we could use a different estimator from the 
default one, namely, maximum likelihood (ML). We chose a "robust" estimator, the 
MLR, as it seemed more appropriate to data obtained through an ordinal scale with 
five categories (see Table 1.10), using a fairly small sample size (N = 137). Let us 
now look at the solution obtained using this estimator.  

3.5.1.1.4. Evaluation of the solution 

Let us recall that the solution is examined with respect to three criteria: 1) the 
overall goodness-of-fit model; 2) the quality of the solution  and the location of 
areas of potential weakness and misfit; and 3) the local fit indices of the solution 
(parameter estimates). The output of the solution, whose details we will comment 
on, are presented in the following minimal form (Table 3.5):  

It can be noted that these results are divided into two parts. The first part displays the 
overall goodness-of-fit indices, while the second offers the local fit indices, including, if 
necessary, the modification indices. Before examining the respective content in detail, 
we can remark that the solution converged normally after 22 iterations, resulting in a 
proper solution. 
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Table 3.5a. Goodness-of-fit indices of the measurement model 
represented by Figure 3.10 
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Table 3.5b. Parameter estimates of the of the measurement model 
in Figure 3.10 (contd.) 
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Overall goodness-of-fit indices 

As we can see, lavaan provides goodness-of-fit indices generated by ML 
estimator as well as MLR estimator under the column, "Robust", using the Yuan-
Bentier correction. We will look more specifically at the indices that appear in this 
last column.  

Absolute Fit Indices (χ² and SRMR) 

We can first observe the difference in the χ² values (Minimum Function Test 
Statistic), generated for these two different methods: χ²ML(5) = 9.432 versus χ² 

Robust(5) = 6.361 (=9.432/1.438, see equation [1.18], Chapter 1 of this book). The 
scaling correction factor for the Yuan-Bentler correction, equal to 1.483 (= 
9.432/6,361) indicates a moderate correction, knowing that a value > 1.00 is 
indicative of a deviation from normality. It can be noted that the two χ²(5), each 
accompanied by 5 df, are not statistically significant (p > 0.05), which suggests that 
there is excellent harmony between the model and the data.  It is not surprising that 
the value of the SRMR (0.036) argues in favor of this harmony.  

Finally, let us recall, that the baseline model refers to the zero model, also called 
the “independence model” as it hypothesizes the total independence of the items 
(Figure 1.6b, Chapter 1). Such a model is dedicated to total inadequacy.  

The incremental fit indices (CFI and TLI) 

In Chapter 1, we saw that the CFI and TLI used, as basis of their comparison, the 
χ² of the null model (the baseline model) which hypothesizes, improbably, that the 
variables of the model have no relationship with each other. It is not surprising that 
the χ² of this model is very high (χ²ML= 140.54 ; χ²robust = 84.44), raising doubts 
about the likelihood of the null model. It is also not surprising that the two indices 
argue in favor of the same conclusion as concerns how well the model fits the data. 
In effect, the CFI and the TLI display “robust”, corrected values, greater than 0.95 
(robust-CFI = 0.984 and robust-TLI = 0.967). Let us recall here that a model fit is all 
the better then the values of the CFI and TLI are close to 1.00, with a threshold 
value of acceptability of at least 0.95.  

The parsimonious fit indices (RMSEA) 

The corrected value of the RMSEA (robust-RMSEA, that is, 0.054, with a 90% 
confidence interval between 0.000 and 0.162, does not exceed the threshold value of 
acceptability (0.06), thus arguing that there is compatibility between the model and the 
data. We observe, however, that the upper limit of the confidence interval exceeds 0.1, 
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thus penalizing a certain lack of parsimony, evidenced by the small number of degrees of 
freedom ( =5) of the model.  

It can, thus, be concluded that the overall goodness-of-fit indices argue in favor of 
a very good fit of the model to the data. While these results do away with the need to 
try and locate the weak points of the model by turning to the fit indices, they cannot 
dispense with the examination of local indices.  

The local fit indices of the solution 

This part of the results is divided into three sub-parts: the parameter estimates of the 
model ("Parameter estimates"), the R² ("R-squares") of the indicators and the 
suggested modifications with the aim of possibly improving the model fit 
(“Modification indices”). 

On consulting the “Parameter estimates” we can already see that the obtained 
solution contains no impurities such as inadmissible and offending estimates 
(negative variances) or very high/low standard error ("std.err"). The "estimate" 
column offers the non-standardized factor loading coefficients, each accompanied 
by its standard error ("std.err"). The direction of the coefficient (negative versus 
positive) indicates the nature of the predicted relationship between the indicator and 
the latent variable upon which it depends. For example, the non-standardized factor 
loading of item 1, that is, 0.914, indicates that an increase of one unit in the latent 
variable, "life satisfaction" is associated with an increase of 0.914 in item 1 (as a 
measured variable). The "z-value" column, whose values are obtained by dividing 
the "Estimate" by its "std.err" makes it possible to judge the statistical significance 
of the factor loading. For example, the z-value of the factor loading of the item 1 is 
equal to 7.322 (i.e. 0.914/0.125 = 7.32). A ratio with an absolute value greater than 
1.96 signifies that the factor loading is significant (i.e. non-zero) at p < 0.05. It can 
be observed that all five factorial factor loading are significant as their statistics are 
greater than 1.96.  

The standardized factor loading occupy the last two columns, called "std.lv" and 
"std.all". The "std.lv" column presents the factor loading of a solution where only 
the latent variables were standardized (i.e. M = 0.00, ET = 1.00) while the "std.all" 
column presents the factor loading of a solution where again the latent variables  
and indicators were standardized (completely standardized solution). This is the 
option that must be studied and evaluated. We will see that, for example, all the 
factor loading are positive and greater than 0.40, which is the required minimum to 
judge the relevance of the link between an item and the factor on which it depends.  
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However, as we will see further down, this required minimum is not unanimously 
accepted.  

It is also possible to obtain a 95% CI for the parameter estimates. In order to do 
this, simply use the following function:  

parameterEstimates (model.EST) 

That part of the results that is relative to variances deserves to be paid attention, 
especially as regards the variance of the latent variable (LS), which is equal to 
0.407. We had written, earlier, that one part of the variance of the reference indicator 
is transferred to the latent variable for which it serves as the reference. The variance 
of item 3, the reference indicator in our model, is 0.807. Its factor loading, 
standardized by the latent factor, is 0.712. When squared (0.712² = 0.50), this factor 
loading indicates what percentage of variance (50%) of the item can be imputed to 
the factor on which it depends. Thus, 50% of the variance of item 3 (which is 0.807) 
is transferred to the latent variable (i.e. 50% of 0.807).  

The variance of the latent variable VAR (LV) λri is obtained as follows (with as 
an illustration of the life satisfaction scale measurement model): 

VAR (LV) = (λri)² σri  [3.6] 

                = (0.712)² 0.807 

                = (0.506) 0.807 

                = 0.408 

where: 

– λri refers to the standardized factor loading of the reference indicator (ri); 

– σri refers to the variance of this indicator. 

The variance of the indicator (σri), which, like the standard-deviation, is 
calculated from the raw data, must not be confused with the error variance of the 
indicator that figures in the results table under the heading “variances”.  

It should be noted that the value 0,408 corresponds to the 0,407 shown in the results 
at the intersection of the "estimate" column and the "variance" line of LS (Table 3.5b). 

As concerns the R² ("R-square"), it gives a great deal of information on the 
quality of the indicator as a representative of the latent variable on which it depends. 
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An R² is obtained by squaring the completely standardized factor loading coefficient. 
The true variance of each item can be obtained by squaring its coefficient of  
factor loading (λ²). This is the fraction of variance explained by the common factor. 
The other part of the total variance (equal to 1 - λ²) is due to the error. For example, 
a standardized value of λ² = 0.39, signifies that 39% of the variance of the concerned 
item is determined by the common factor, and the rest (1-0.39 - 0.61) or 61%, is 
determined by the unique factor (for example, measurement errors). These factorial 
factor loading coefficients express the degree of convergence between the latent 
variables and their indicators. They make it possible to estimate the quality of the 
relationship between an item and the factor on which it depends (i.e., validity 
coefficient). We can see that the highest R² is related to item 3, considered to be the 
reference item as it explicitly refers to life satisfaction ("I am satisfied with my 
life"). Some psychometricians (for example, [COM 92, TAB 07]) recommend that 
we choose items whose R² is greater than 0.40 (thus showing a factorial factor 
loading greater than 0.63).  

The final part of the results provides the modification indices, which deserve to be 
clarified. These indices can be useful when the model's fit is problematic. The "rhs" 
(right hand side), "op" (operator) and "lhs" (left hand side) columns all present 
variable pairs (for example, "item3" and "item1") and the nature of the suggested 
relationships between them, through the operator (for example, "~~" for correlation). 
The introduction, through copy-paste, of such a suggestion within the model  
(here: item3 ~~item1) to correlate error variances of item 3 and  item 1 could improve  
model fit. The consequences of such a modification on the χ² of the model  
are given first in the columns "mi" (for the χ²ML) and "mi-scaled" (for the χ²robust).  
We will examine this later more closely. Freeing the correlation of these two error 
variances brings down the χ²robust by 3.472 points. Is this reduction enough to allow an 
improvement of model fit? No. This is because a decrease of at least 3.84 points is 
required, reflecting the critical value of a χ² for 1 df at p < 0.05 (simply consult a χ² 
table). The df comes from the fact that we have freed the correlation between the two 
two error variances which becomes a new parameter that is free to be estimated and 
thus reduces the df of the original model by one point. Each modification lowers the df 
of the model by one point. And, in order for such a modification to claim to improve 
the the overall model fit, the consequent decrease in value of χ² must be greater than 
3.84. It can be seen, for example, by examining the "mid-scaled" column, that no 
decrease reaches the critical value 3.84, and therefore none is able to improve the 
model's fit. The column "epc" (expected parameter change) gives the non-
standardized value of the new parameter if it was specified in the model. The last 
columns give the standardized value based on the type of standardization. For 
example, "std.nox" offers a solution where all variables, apart from the exogenous 
variables, have been standardized. 
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Finally, a brief note about the section on intercepts, which owes its presence only 
to having used the MLR estimator. In principle, the intercepts are displayed when 
the command "meastructures = TRUE" is activated in the model estimation where 
the analysis covers the variances-covariances as well as the means of the indicators 
(for example, multigroup analyses, longitudinal studies). The intercept of an 
indicator thus refers to its estimated mean when the factor it depends on is equal to 
zero. We will return to this further in the text.  

3.5.1.1.5. Matrix of observed (S), reproduced (Σ) and residual (S – Σ) 
covariances/correlations  

The reader can easily replicate Table 1.5, presented in Chapter 1 of this book. 
The matrix of observed covariances/correlations (S) in our sample is easy to obtain, 
using the following commands: 

# To obtain the matrix of observed correlations (S). 
 
cor (BASE) 
 
# To obtain the matrix of observed covariances (S). 
 
cov (BASE) 

 
As concerns the model-implied covariance matrix (Σ), which is the very essence 

of structural equation modeling, the reader can either manually calculate it or obtain 
it through lavaan using some simple commands.  

Let us first examine manual calculations. The simplicity of our model lends itself 
to this since it contains only ten covariances/correlations. The product of two factor 
loadings factorial “std.all” and “std.lv” of two items reproduces their correlation and 
covariance respectively. To clarify, let us take item 3 and item 1 (Table 3.5b). Their 
reproduced correlation is equal to (0.712) (0.626), that is 0.445 (0.45, rounding off), 
with their observed correlation being 0.505. Their reproduced covariance is equal to 
(0.638) (0.583), that is, 0.371, while their observed covariance is 0.424. 

By proceeding in this way, the reader will be able to reproduce both the 
covariance matrix and the correlation matrix (Σ). The differences between the two 
matrices S and Σ generate the residual covariance/correlation matrix which is 
obtained by substracting the value of element of the reproduced matrix from that of the 
corresponding element in the observed matrix (S – Σ). The residual correlation of item 
3 and item 1 is, thus, equal to 0.505 – 0.445, or 0.06. 
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The reader can compare the results obtained manually with those obtained 
through lavaan, by using the following commands:  

fitted (model.EST)       # To obtain the model-implied covariance matrix (Σ). 

In order to convert the covariances matrix into a correlations matrix, simply 
proceed as described below:  

cov.reproduced <- fitted (model.EST)$cov      #cov.reproduced is 
an arbitrary name. 
cor.reproduced <- cov2cor (cov.reproduced)  #cov.reproduced  
is an arbitrary name. 
cor.reproduced          # For the matrix (Σ) 

 
Finally, in order to obtain the residual matrix (S – Σ) one of the following 

commands is required:  

# To obtain the residual correlations matrix (S - Σ). 
 
residuals (model.EST, type = "cor") 
 
# To obtain the residual covariances matrix (S - Σ). 
 
residuals (model.EST, type = "raw") 

3.5.1.1.6. Reliability coefficients 

The solution to a CFA is not limited only to the overall fit indices, which, 
through the evaluation of the conformity of model fit to data, seeks in fact to test its 
structural validity. It also makes it possible to analytically estimate the reliability of 
each item through its R² and, overall, the reliability and the internal consistency of a 
measure made up of all the items.  

As concerns the reliability of a group of items with respect to a given factor, this 
can be estimated using several coefficients, the best known of which is Cronbach's 
alpha [CRO 51], based on the correlations/covariances between items. However, it is 
also possible to calculate others using the results of the CFA (i.e. the factorial  
factor loadings). For example, the composite reliability coefficient also called 
“omega”) proposed by Raykov [RAY 01] can replace Cronbach's alpha: 

ω = (Σλ೔)²   (Σλ೔)² ାΣ(θஔ೔)  [3.7] 
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where: 

– λi = non-standardized estimate (loading) of the item "i" by the latent factor; 

– θδi  = the error variance for the item "i". 

This is, in fact, a composite index that evaluates the internal consistency of a 
measure. It indicates the degree of homogeneity of the content of the items used to 
measure the theoretical construct (the factor). The value of this index varies between 
0 and 1. The closer this value is to 1, the greater the reliability. This formula shows 
how the definition of internal consistency is entirely subordinate to the error 
variance of the items. In addition, it should be emphasized that a high alpha 
coefficient is not an indicator of the unidimensionality of a measure [COR 93]. 

lavaan calculates four coefficients, including the Raykov omega coefficient, 
using the "reliability ( )" function. Here is an illustration applied to the 
unidimensional model of the life satisfaction scale: 

STEP 2. Specification of the measurement model in Figure 3.10. 
 
model.SPE <- 'LS =~ item3 + item1 + item2 + item4 + 
item5' 
 
STEP 3. Model estimation using the model-fitting function "cfa" 
 
model.EST <- cfa (model.SPE, data = BASE) 
 
STEP 4. Retrieving of the results including the modification indices  
 
summary (model.EST, fit.measures = TRUE,  
standardized = TRUE, modindices = TRUE) 
 
# Calculating the reliability coefficients (with semTools). 
 
reliability (model.EST) 

Table 3.6 shows the command and the resulting output.  
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Table 3.6. Reliability indices 

It can be noted that the values of the four output reliability coefficients (i.e. 
Cronbach's alpha [CRO 51], Raykov's omega [RAY 01a], Bentler's omega 2 [BEN 09] 
and McDonald's omega 3 [MCD 99]) are close to each other. The value of these 
indices range from 0 (zero reliability) to 1 (excellent reliability). Reliability increases 
the closer the value gets to 1.00, with an acceptability threshold of 0.70. Let us also 
recall that these indices are sensitive to the number of items. The last line shows a 
different value. This is "avervar", the value of the Average variance extracted (AVE; 
[FOR 81]) for each latent variable in the model.  

3.5.1.2. Bi/multidimensional representation of a measure 

This representation refers to oblique factor solutions. To illustrate, let us look at 
the dispositional optimism scale developed by Snyder and colleagues [SNY 91]. 
This scale comprises of eight items representing two correlated dimensions: 
Pathways (four items: p1, p3, p4, p5) and Agency (four items: a2, a6, a7, a8). The 
graph in Figure 3.11 translates the hypothesis of this bidimensional model: two 
common factors affecting each of the items specified in advance and measuring two 
different, but connected, aspects of the construct. We can see that four items depend 
only on the "Pathways" factor and their respective unique factor. The four other 
items depend only on the "Agency" factor as well as on their respective unique 
factor. While the possibility is not excluded, it is rarely possible for an item to 
depend on several factors at once (i.e., cross-loading). We can also note that 
measurement errors, here, are assumed to have no intercorrelations. However, we 
also cannot exclude the possibility that they could be intercorrelated. Finally, it is 
hypothesized that there is a covariation between two common factors; they are, in 
effect, connected on the diagram by a curved double arrow. When we parameterize 
the model, the covariance between these two factors will be considered as a free 
parameter to be estimated. In lavaan, the correlations between latent exogenous 
factors (dimensions) are estimated by default.  

We can thus count eight structural equations, accompanied, this time, by a 
covariance between the two factors. 
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hop.p1 = pathways + e1 

hop.p3 = pathways + e2 

hop.p4 = pathways + e3 

hop.p5 = pathways + e4 

hop.a2 = agency + e2 

hop.a6 = agency + e6 

hop.a7 = agency + e7 

hop.a8 = agency + e8 

Figure 3.11. Bidimensional model of the dispositional optimism scale  
and its equations (the curved double arrows represent the variances and 

covariances/correlations; the asterisk denotes a free parameter to be estimated) 
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3.5.1.2.1. Model specification in lavaan syntax  

It can be noted that "hop.p1", "hop.p3", "hop.p4", "hop.p5" are the names of the 
indicators of the dimension Pathways, as they appear in our file (BASE). We could 
have named them "item1", "item2", "item3", and "item4" for instance. We can also 
note that by default lavaan correlates latent exogenous variables. It is, thus, futile to 
add the following indication "pathways ~~ agency" when specifying the model. On 
the other hand, if we wish to remove this correlation from the model, it must be 
specified as follows: "pathways ~~ 0*agency".  

STEP 2.  Specification of the bidimensional model of hope scale (Figure 3.11), 
correlation between the dimensions estimated by default.  
 
model.SPE <- 'pathways =~ hop.p1 + hop.p3 + hop.p4 + 
hop.p5 agency =~ hop.a2 + hop.a6 + hop.a7 + hop.a8' 
 
STEP 3. Model estimation using the model-fitting function "cfa" 
 
model.EST <- cfa (model.SPE, data = BASE,  
estimator = "MLR") 
 
STEP 4. Retrieving the results including the modification indices. 
 
summary (model.EST, fit.measures = TRUE,  
standardized = TRUE, modindices = TRUE) 

 
It can be noted here that the chosen estimation method is a method said to be 

"robust" (MLR) as the Mardia calculation coefficient (100.77, p < 0.001) indicates a 
severe violation of the multivariate normality of our data.  

3.5.1.2.2. Evaluation of the solution 

The only difference with respect to the solution of the unidimensional model (see 
the solution of the life satisfaction scale Table 3.5b) is found in the presence of a 
section dedicated to the covariances/correlations between the latent variables present 
in the model (Table 3.7). This aspect is far from anodyne, as it gives information on 
the discriminant validity of the variables present. The correlations between the latent 
variables in a measurement model must be interpreted according to the theoretical 
considerations underlying the model. For example, low correlation or the absence of 
any correlation between latent variables argues for good discriminant validity 
between the variables. On the other hand, high correlation, that goes beyond 0.80 or  
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0.85, brings into doubt this discriminant validity. We are rather in the presence of 
redundant or similar factors that it would be wiser to combine. It can be noted that 
the correlation between the two dimensions of the dispositional hope scale  
("Pathways" and "Agency") is at 0.763, indicating that its two components are 
different from one another while being strongly connected to one another (see Table 3.7). 
Moreover, to be persuaded of this, it is enough to simply compare the fit of this 
bidimensional solution (χ² = 30.67, df = 19) with that of a unidimensional solution 
(χ²= 54.13, df = 20), which is not reported here.  

 

Table 3.7. Parameter estimates from the two-factor CFA model of hope   

3.5.1.2.3. Reliability coefficients 

Here, the command that was already presented earlier ("reliability (model.EST)") 
makes it possible to obtain the four reliability coefficients (i.e. alpha, omega, omega  
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2, omega 3) for each factor (dimension) in the specified model. In the case of our 
example these would be "Pathways" and "Agency". Generally speaking, when using 
this command there can be as many results as there are dimensions (factors) in the 
hypothetical model specified and estimated.  

3.5.1.3. Hierarchical representation of a higher-order structure of  a 
measurement model 

Figure 3.12 shows the hypothesis of a hierarchical factor solution (i.e., higher-
order or second-order measurement model) in which "physical ability",  
"physical appearance", "relations with peers" and "relations with parents" are four 
first-order or lower-order factors, each influencing a group of items, but being, in 
turn, influenced by SDQ, a common second-order or higher-order factor. This is, in 
a way, the factor of factors. This is supposed to explain the relations between the 
first-order factors.  

It is important to note that "physical ability", "physical appearance", "peers" and 
"parents" become, here, dependent (latent) variables whose variances and covariances 
are no longer estimated as they are assumed to depend on a second-order factor 
(SDQ). This is reflected in the diagram by the absence of curved arrows between 
"physical ability", "appearance", "peers" and "parents", and by the presence of arrows 
directed from SDQ towards "physical ability", "appearance", "peers" and "parents". 
Moreover, the higher-order factor loadings of "physical ability", "appearance", "peers" 
and "parents" from SDQ cannot be made without errors, hence the residual variables 
(E1, E2, E3, E4) associated with each of the the four lower-order factors that make it 
possible to infer the share of variance imputable to a higher-order factor and the 
portion that can be imputed to all that is extrinsic to the model (i.e. disturbance).  

It must be emphasized that in order to be identified, such a model requires the 
presence of at least the four lower-order factors with factors because with only three 
lower-order factors the structural portion (i.e., higher-order factor loadings) is just-
identified. 

Finally, when testing the a hierarchical factor model, the following general 
sequence must be observed: 1) ensuring that the first-order model fits the data well 
(a multidimensional CFA must be applied, bringing into relation the lower-order 
factors of the model); 2) reviewing the oblique multidimensional solution and, above 
all, examining the amplitude and the direction of the correlations between the factors 
(for example, the very modest correlation between the first-order dimensions do not 
argue in favor of the likelihood of a second-order factor; 3) estimating the second-
order model as conceptually and empirically warranted. We will present only the 
third sequence here.  
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Figure 3.12. Higher-order (second-order) CFA model  
The variances – curved double arrows – of the exogenous  

latent variables have not been represented 

3.5.1.3.1. Illustration 

The following illustration has three objectives. First, to demonstrate how to use a 

correlation matrix accompanied by standard deviations, as the input matrix for 

lavaan, in the place of the unavailable raw data, to estimate a model. Next, to show 

how to retranscribe in lavaan syntax, estimating, and then evaluating a higher-order 

CFA model. Finally, comparing the hierarchical factor solution with a bifactorial 

solution, which will be presented later.  

The correlations matrix and the standard deviations come from a paper by Marsh 

and Hocevar [MAR 85] in which these authors proposed to test the factorial 

structure of the Self-Description Questionnaire (SDQ). The SDQ is a 

multidimensional scale of self-concept. It measures four non-academic aspects of 

self-concept (physical ability, physical appearance, relations with peers, relations 

with parents) and three academic aspects of self-concept (reading, mathematics, 

general school) in children and teenagers. For the purpose of this illustration, we 

will restrict ourselves here to the four non-academic self-concept dimensions 

measured among 251 students (grade 5). Each dimension was measured by four 

indicators (items). 
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3.5.1.3.2. The correlations matrix and the standard deviations as 'input' for 
lavaan  

Apart from the polychorical or tetrachorical correlations generated when 
necessary from raw data, lavaan not only analyzes the covariances matrix, but 
requires, above all, that these be symmetric (i.e. square matrix). However, as is often 
the case, in the presence of a triangle (lower or higher) of a covariances/correlations 
matrix, lavaan makes it possible to make this matrix symmetric. Moreover, in order 
to convert a correlations matrix into a covariances matrix, we must have the standard 
deviations of the intercorrelated variables. This conversion operation, whose 
technical aspects are beyond the scope of this chapter, can be easily realized using 
lavaan, by invoking the function "cor2cov". The details are as follows: 

STEP 1. Using as imput a correlation matrix along with standard deviations of the 
variables.  
 
# Enter or copy-paste the lower triangular matrix of correlations. 
 
> matrix.cor <- ' 
1.00 

.31 1.00 

.52 .45 1.00 

.54 .46 .70 1.00 

.15 .33 .22 .21 1.00 

.14 .28 .21 .13 .72 1.00 

.16 .32 .35 .31 .59 .56 1.00 

.23 .29 .43 .36 .55 .51 .65 1.00 

.24 .13 .24 .23 .25 .24 .24 .30 1.00 

.19 .26 .22 .18 .34 .37 .36 .32 .38 1.00 

.16 .24 .36 .30 .33 .29 .44 .51 .47 .50 1.00 

.16 .21 .35 .24 .31 .33 .41 .39 .47 .47 .55 1.00 

.08 .18 .09 .12 .19 .24 .08 .21 .21 .19 .19 .20 1.00 

.01 -.01 .03 .02 .10 .13 .03 .05 .26 .17 .23 .26 .33 1.00 

.06 .19 .22 .22 .23 .24 .20 .26 .16 .23 .38 .24 .42 .40 1.00 

.04 .17 .10 .07 .26 .24 .12 .26 .16 .22 .32 .17 .42 .42 .65 1.00 

.03 .08 .08 .06 .15 .16 .10 .20 .24 .14 .21 .18 .21 .21 .29 .29 1.00 

.06 .09 .11 .10 .10 .14 .11 .24 .19 .16 .23 .11 .23 .20 .32 .36 .77 1.00 

.08 .15 .17 .14 .18 .20 .22 .30 .26 .24 .30 .25 .21 .25 .33 .30 .75 .74 1.00 

.06 .08 .15 .18 .09 .08 .08 .15 .18 .17 .24 .17 .18 .26 .28 .24 .68 .70 .77 1.00 

-.03 .30 .19 .08 .15 .09 .07 .08 .00 .13 .06 .12 .05 .10 .10 .18 .21 .09 .19 .22 1.00 

.12 .33 .28 .22 .25 .14 .20 .22 .18 .33 .23 .26 .13 .18 .24 .18 .29 .19 .35 .33 .71 1.00 

-.01 .37 .25 .11 .16 .09 .15 .16 .07 .22 .22 .21 .04 .08 .14 .16 .24 .20 .33 .30 .73 .79 1.00 
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-.01 .33 .30 .14 .17 .08 .16 .21 .09 .24 .23 .21 .09 .10 .12 .18 .24 .18 .28 .30 .75 .75 .87 1.00 

.01 .19 .11 .07 .15 .17 .13 .19 .17 .24 .27 .15 .05 .11 .14 .20 .39 .37 .41 .33 .40 .48 .50 .49 1.00 

.17 .35 .30 .22 .21 .23 .19 .24 .22 .28 .24 .22 .06 .04 .16 .21 .35 .35 .34 .32 .39 .47 .49 .47 .49 1.00 

-.02 .16 .16 .12 .14 .12 .15 .15 .11 .18 .28 .18 .16 .23 .36 .31 .44 .45 .49 .51 .49 .58 .59 .54 .60 .39 1.00 

.07 .27 .23 .19 .14 .11 .18 .21 .16 .20 .32 .21 .16 .17 .27 .31 .46 .46 .53 .46 .42 .52 .54 .52 .62 .52 .68 1.00' 

# Making the matrix symmetric with the name of each of the 28 variables.  
 
>matrix.sym <- getCov (matrix.cor, names = c ("item1", 

"item2", "item3", "item4", "item5", "item6", "item7", 

"item8", "item9", "item10", "item11", "item12", "item13", 

"item14", "item15, "item16"," item17", "item18", "item19", 

"item20", "item21", "item22", "item23", "item24", "item25", 

"item26", "item27"," item28")) 

 
# Converting the symmetric correlations and standard deviations (sds) matrix into 
covariances matrices by using the function "cor2cov".  
 
>SDQ.cov <- cor2cov (matrix.sym, sds = c (1.84, 1.94, 2.07, 
1.82, 2.34, 2.61, 2.48, 2.34, 1.71, 1.93, 2.18, 1.94, 1.31, 

1.57, 1.77, 1.47, 2.10, 2.11, 2.23, 2.23, 2.47, 2.21, 2.46, 

2.36, 2.00, 1.84, 2.26, 2.13)) 

 
# Visualizing the covariances matrix thus obtained. 
 
>SDQ.cov  # Clicking on enter to visualize 

 
The use of a correlation matrix along with standard deviations as input involves 

three simple operations: 1) first of all, entering or copy-pasting the matrix (which in 
our example is called "matrix.cor") and placing it within single quotation marks  
(' '); 2) transforming the triangular matrix into a symmetric matrix and naming its 
constituent variables in the order that they appear within the matrix using the 
function "getCov"; the name of the matrix entered earlier is within parentheses and 
the name of each variable is entered within quotation marks "names = c ("", "", 
etc.)"; 3) converting the correlations matrix into a covariances matrix by using the 
standard deviations of the variables ("sds") and by using the function "cor2cov".  To 
ensure that the conversion has indeed taken place, just type the name given to the 
converted dmatrix ("SDQ.cov ", in our example) after the chevron > and then click 
on enter.  

It must be specified here that the conversion operation is not required if the matrix 
that has been entered or copy-pasted is a covariance matrix and not a correlation matrix.  
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Finally, it can be noted that in our example, the matrix that will be specified (in 
step 3) in order to be analyzed to estimate the model is called "SDQ.cov ".  

3.5.1.3.3. Model specification in lavaan syntax  

The two new features that must be pointed out in the specification below relate 
to step 3, where "data=" gives way to "sample.cov=" to indicate the name given to 
the matrix that has been converted and that will be used for estimating the model 
("SDQ.cov" in our example) and to "sample.nob=" to specify the number of 
observations (sample size = 251 participants, in our example). We can also note that 
only 16 items of the 28 variables listed in the correlations matrix will be used in 
order to test the present model.  

STEP 2.– Specification of the second-order SDQ model (Figure 3.12). 
 
model.SPE <- 'ability =~ item1 + item2 + item3 + item4 
appearance =~ item5 + item6 + item7 + item8 
peers =~ item9 + item10 + item11 + item12 
parents =~ item13 + item14 + item15 + item16 
SDQ = ~ ability + appearance + peer + parents' 
 
STEP 3. Model estimation using the model-fitting function "cfa". 
 
model.EST <- cfa (model.SPE, sample.cov = SDQ.cov, 
sample.nobs = 251) 
 
STEP 4. Retrieving the results inlcuding the modification indices. 
 
summary (model.EST, fit.measures = TRUE,  
standardized = TRUE, rsq = TRUE) 

 
We can again observe that for the identification of the model, the saturation of 

the first item of each of the four lower-order dimensions is fixed at 1.00 by default 
(item 1 for the latent variable "ability", item 5 for "appearance", item 9 for "peers", 
item 13 for "parents"). Similarly, the effect of the SDQ on the first-order latent 
variable "ability" is fixed at 1.00. Setting a value like this occurs by default, as 
"ability" figure first in the specified structural equation (SDQ = ~ ability + 
appearance + peers + parents).  

Finally, we note that by default (and in this case, out of compulsion) the 
estimation method will be ML as we have a covariance matrix as input.  
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3.5.1.3.4. Evaluation of the solution 

A review of the solution will return to the results sought in "summary", namely 
the model fit indices (fit.measures), the standardized estimates (standardized = 
TRUE) and the R² (rsq = TRUE). 

Overall goodness-of-fit indices 

Inspection of the solution shows that the overall model fit is not very satisfactory 
but remains acceptable (Table 3.8). In effect not only the  χ² value was, as expected, 
statistically significant, but also TLI (0.909) and RMSEA (0.069) values do not plead 
in favor of the hierarchical solution. 

 

Table 3.8a. Goodness-of- fit indices of the higher-order CFA model (Figure 3.12) 
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The local fit indices of the solution 

First of all, the solution suffers from no anomaly (Table 3.8b). Next, two things draw 
our attention. First, the standardized factorial factor loadings of the indicators by the first-
order factors (i.e. lower-order factor loadings), all of which go beyond 0.50.→ Secondly, 
the effects of the second-order factor on the first-order factors (i.e., higher-order factor 
loadings), namely, the four dimension of self-concept: "physical ability", "appearance", 
"peers" and "parents". → The effect of the SQDQ on "physical ability" is 0.545; it is 
0.735 on "appearance", 0.880 on "peers" and 0.503 on "parents". All these effects are 
statistically significant (p = 0.000). 

 

Table 3.8b. Parameter estimates of the model in Figure 3.12 (contd.) 
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Examining the variances and the R² (Table 3.8b and Table 3.8c) allows us to 
determine, for each first-order dimension, what portion of its variance can be 
imputed to the second-order factor (SDQ). We can observe, for example, that the 
variance (column "std.all") of the "physical ability" dimension is equal to 0.703. 
Using this estimation, we can see that the SDQ factor accounts for 30% here ((1 – 
0.703 = 0.297). The value 0.297 (rounded off to 30%) corresponds to R². We can 
also see that the part of the variance of the dimension "relations with peers" that can 
be imputed to the SDQ hierarchical factor is 77%. For the dimension "relations with 
parents" this is only 25%.  

 

Table 3.8c. The R² of the solution (contd.) 

3.5.1.4. The bifactorial representation of a measure 

This representation offers an interesting alternative to the hierarchical second-order 
representation. The two representations are conceptually similar, but functionally and 
mathematically different. The bifactorial representation hypothesizes that each indicator 
of a measure is directly dependent on three sources of influence: (1) a common factor, 
(2) a specific factor (dimension) for which the indicator is the unique representative, and 
(3) the measurement error. Figure 3.13 presents the bifactorial SDQ model. It can be 
noted that in the bifactorial model, the common factor is not correlated with specific 
factors which, in turn, are not correlated among themselves; this cannot fail to surprise, 
and rightly so.  
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used as a basic model with which the second-order model can be compared. These two 
models are nested [YUN 99], in the sense that the second-order model, with  
fewer parameters, could be considered a special case of the bifactorial model (the 
second-order model is nested under the bifactorial model). Thus, the difference 
between the values and their χ² constitute a statistical test ((∆χ² = χ² second order – χ² 
bifactorial) with the number of degrees of freedom being the difference between their 
respective degrees of freedom (Δdf = df second order – df bifactorial). A non-
significant difference indicates that the fit of both models is similar. When, on the 
other hand, this difference is statistically significant, it can be inferred that the 
bifactorial model fits the data substantially better than the second-order model.  

We must also note that it is customary to test a first-order (oblique) multi-
dimensional model before proceeding to the estimation of the bifactorial model. This 
step will be ignored here to proceed directly to the estimation of the bifactorial model.  

3.5.1.4.2. Specification of the bifactorial model in lavaan syntax  

The two specificities with respect to the preceding model are: 1) each of the 16 
items loads on the SDQ factor in parallel to their loading on their respective factor; 
2) all the correlations between the factors (estimated by default with lavaan) are 
constrained to be zero and specified as such. For example, "ability~~0*appearance" 
signifies that the correlation between these two dimensions is constrained to be zero 
(non-existent).  

STEP 2. Specification of the bifactorial SDQ model (Figure 3.13) 
 
model.SPE <- 'ability =~ item1 + item2 + item3 + item4 
appearance =~ item5 + item6 + item7 + item8 
peers =~ item9 + item10 +item11 + item12 
parents =~ item13 + item14 + item15 + item16 
SDQ =~ item1 + item2 + item3 + item4 + item5 + item6 + 
item7 + item8 + 
item9 + item10 + item11 + item12 + item13 + item14 + 
item15 + item16 
ability ~~ 0* * appearance 
ability ~~ 0*peers 
ability ~ ~ 0* * parents 
appearance ~ ~ 0* * peers 
appearance ~~ 0*parents 
peers ~ ~ 0*parents 
SDQ ~~ 0*ability 
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SDQ ~~ 0*appearance 
SDQ ~~ 0*peers 
SDQ ~~ 0*parents' 

STEP 3. Model estimation using the model-fiiting function "cfa". 
 
model.EST <- cfa (model.SPE, sample.cov = SDQ.cov, 
sample.nobs = 251) 
 
STEP 4. Retrieving the results including the modification indices. 
 
summary (model.EST, fit.measures = TRUE,  
standardized = TRUE, rsq = TRUE) 

 

3.5.1.4.3. Evaluation of the solution 

Using the ML (maximum likelihood) estimator, the solution converged normally 
after 89 iterations (see Table 3.9). Moreover, it suffers from no offending estimates, 
such as a negative variance. Tables 3.9a and 3.9b provide the details of the solution.  

Overall goodness-of-fit indices 

If we read only the χ² whose value is equal to 157.59 for 88 degrees of freedom 
significant at p = 0.000, the model’s fit to data cannot be accepted. Nonetheless, the 
other fit indices ((TLI = 0.940, CFI = 0.956, RMSEA = 0.056) argue in favor of the 
bifactorial solution.  

It will now be instructive to compare the fit of the bifactorial solution with the fit 
of the second-order solution (see Table 3.8). The difference in the values of their  
χ² is 61.88 (= 219.47 – 157.59) with a difference of 12 df (100-88). This difference 
(∆χ²(12) = 61.88) is significant at p<0.05 (it is enough to consult a χ² table), 
indicating that the bifactorial solution best approximates the reality of than the 
hierarchical solution.  

Local fit indices  

Table 3.9 gives the details. The review will focus on the comparison of the factor 
loadings, either on the genetal factor (SDQ) or on the specific factors ("ability", 
"appearance", "peers", "parents"). The logic is simple. If the factor loadings on specific 
factors are higher and more substantial than those on the general factor, the 
multidimensionality of the measure is reinforced. Conversely, the unidimensionality is 
reinforced.  
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Table 3.9a. Goodness-of-fit indices for the bifactorial SDQ model (Figure 3.13)  

We can see that of the 16 factor loadings by the specific factors, 13 show factor 
loadings greater than 0.40. Only 10 saturations by the general factor display values 
equal to or greater than 0.40. Moreover, the mean saturation (computed manually) 
by the specific factors comes to 0.527, while the average factor loading on the 
general factor is 0.458. The multidimensionality of the scale seems more likely than 
the existence of a general factor underpinning (or explaining, in the second-order 
model) an underlying structure. 
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Table 3.9b. Local indices (parameter estimates) of the bifactorial  
SDQ model (Figure 3.13) (contd.) 

Finally, the R²  ("R-square") values for each item vary from 0.281 (for item 14) 
to 0.751 (for item 5). Where item 14 is concerned, 28% of its variance can be 
imputed as much to the general factor (SDQ) as to the specific factor on which it 
depends ("parents"). For item 5, 75% of its variance can be attributed either to the 
general factor (SDQ) or to the specific factor on which it depends ("appearance").  
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Table 3.9c. Local indices of the bifactorial SDQ model  
(here the R²). (Figure 3.13) (contd.)  

Reflective measurement model versus formative measurement model  

In conclusion, it seems useful to raise the question of the status of indicators within 
measurement models: are they the effect (consequence) or the cause of the latent 
variable? Until now, we have presented them as being subject to the influence of latent 
variables (reflective model).  

In effect, it is assumed that this influence explains the interdependence that exists 
between these indicators. This conception is reflected in a graph where the arrows 
move from factors towards the measured variables (items). The monofactorial 
representation of the life satisfaction scale is an illustration of this. As reflective 
indicators, these items reflect the effect of the factor (latent factor) on which they 
depend.  Thus, each reflective item is accompanied by a measurement error which is 
assumed to be non-correlated with the latent factor. However, according to Bollen and 
Lennox [BOL 91], there is nothing to prevent us from considering the indicators as 
being the source of a latent variable (also see [EDW 00]). Indeed, it is not absurd to 
think that the indicators could explain a latent factor. For example, we could assume 
that satisfaction with life depends, among other things, on subjective health, financial 
conditions, marital satisfaction, satisfaction at work and leisure activities. Figure 3.14 
shows this point of view with respect to the determinant (causal) indicators. This point 
of view seems, in many cases, likelier than thinking of determined indicators (effects). 
This is a formative measurement model.  
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Figure 3.14. Formative measurement model with causal indicators  

Here, it must be emphasized that formative measurement models quite often 
encounter identification and convergence problems [DIA 08, GRA 08]. Difficulties 
such as these may be resolved by integrating these models within structural models 
made up of reflective latent variables. In effect, the models multiple indicators and 
multiple causes (MIMIC), put forth by Jöreskog and Sörbom [JÖR 96], offer a 
heuristic compromise that may resolve the identification and convergence problems. In 
its simplest form, a MIMIC model contains a single latent variable (factor) that is 
dependent on and determined by certain measured variables (the causal indicators) on 
the one hand, while explaining a number of observed variables (effects-indicators) on 
the other hand. Figure 3.15 graphically illustrates such a model. The reader can find in 
Loehlin [LOE 98] a more complex illustrated form that brings in several latent 
variables. 

 

Figure 3.15. The multiple indicators and multiple causes (MIMIC) model 

X1

X2

X3

F

E1
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It is very simple to retranscribe a formative or MIMIC measurement model into 
lavaan syntax: 

STEP 2. Specification of the formative measurement model (Figure 3.14). 
 
model.SPE <- 'F <~ x1 + x2 + x3' 

STEP 2. Specification of the MIMIC model (Figure 3.15). 
 
model.SPE <- 'F =~ Y1 + Y2 + Y3 
             F <~ x1 + x2 + x3' 
 
# Or again, by using the regression operator ~ instead of the formative operator <~. 
 
model.SPE <- 'F =~ Y1 + Y2 + Y3 
              F ~ x1 + x2 + x3'    
  

3.5.1.5. Structural Model 

As Figure 3.8b shows, the structural model refers to that portion of the general model 
that contains the relationships between latent variables. The structural model, strictly 
speaking, refers to the interrelation between the latent variables within a general model 
containing latent variables. This is actually the part relating to the regression between 
these latent variables. Thus, each endogenous variable is expressed as a linear function of 
the variables that predict it. There are, therefore, as many structural equations as there are 
endogenous (dependent) variables in a model. Let us return to Figure 3.8b, which we 
will use to illustrate these observations. Figure 3.16 is an extraction of the structural 
portion. This portion of a general structural model contains four latent variables: two 
exogenous (independent) correlated variables ("self-esteem" and "optimism") and two 
endogenous (dependent) variables ("self-stereotype" and "health") that give rise to two 
structural equations.  

F3 = F1 + F2 + E1 

F4 = F3 + E2 

As we have seen, each equation contains as many terms as there are arrows 
pointing to the concerned dependent variable. To put it differently, we could say, for 
example, that F3 is subject to the direct predictive effects of F1 and F2 as well as the 
influence of an error term ("E1"), the variable that represents the sources of variations 
(disturbances) external to the model.  
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Figure 3.16. Structural portion of Figure 3.8b 

Each term in the equation represents a direct predictive effect on the dependent 
variable in question. What about the indirect effects? 

Here also, of course, we have the total effect of a latent variable on another latent 
variable being equal to the sum of the direct effect and/or all indirect effects of one 
on the other, this generally being the product of the other direct effects. Here is an 
illustration from the graph in Figure 3.16:  

F3 → F4 = direct effect 

F1 ---> F4 = indirect effect of F1 on F4 via F3 

F2 ---> F4 = indirect effect of F2 on F4 via F3 

The indirect effect of F1 on F4 via F3 is obtained by multiplying the path 
coefficients b1 and b3 (b1*b3); and the indirect effect of F2 on F4 via F3 is the 
product of the path coefficients b2 and b4 (b2*b3). Thus, the total effect on F4 is 
equal to (b1*b3) + (b2*b3) + b3. 

As we have seen, contrary to most modeling software, lavaan does not 
automatically compute these different effects. However, the mathematical aspects of 
these computations will not be described here. For this, we refer the reader to 
Mueller's text [MUE 96]. 

Moreover, recursiveness or non-recursiveness is a property that also concerns 
structural models with latent variables. Three types of relationship, illustrated in  
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model and not only the portion relating to the relationship between latent variables. 
The main difficulty is determining and counting the parameters that are free to be 
estimated within a model.  

To obtain the number of the degrees of freedom of the model, we simply need to 
substract the number of parameters to be estimated from the number of variances 
and covariances of the measured variables.  

3.5.1.5.2. Model estimation 

As soon as it is over-identified, a model can be testable. The question then arises: 
which approach to estimation we have to choose: a one-step modeling approach or a 
two-step modeling approach? 

Model estimation in one or two steps?  

The question of how many steps the estimation procedure should comprise 
comes up only in the presence of a general structural model, which, we must recall, 
is a hybrid combination of measurement and structural models. A simple example 
can help clarify this concept. Let us assume that we have a general structural model 
that fails to fit our data. A legitimate and worrying question then arises about the 
reasons for such a failure: is this imputable to the measurement models that 
constitute it – and to them alone?; is it imputable to the structural model – and to this 
alone?; or, perhaps, is it imputable to the entirety of this model? It is clear that one 
single estimation will not allow us to answer this. Thus, to reach an answer, we must 
proceed step by step, that is, carry out two separate analyses: the first will focus on 
the measurement model and the second on the specified general structural model, 
and this will happen only if the first model proves to be satisfactory. The first 
analysis is thus considered as a prerequisite for the estimation of the general 
structural model. 

Initially proposed by James et al. [JAM 82] and then presented in a clearly 
argued form by Anderson and Gerbing [AND 88], this procedure is now of working 
is now known as the two-step approach. However, despite the apparent common 
sense that seems to characterize this, it has not been unanimously accepted by 
specialists. An animated debate was sparked off between specialists such as 
Anderson and Gerbin [AND 88] and Mulaik and James [MUL 95] (the major 
arguments in this debate can be found in Hayduk [HAY 96]) who believed that this 
procedure was not only justified but necessary, and other specialists such as Fornell and 
Yi [FOR 92a, FOR 92b] and Hayduk [HAY 96], who refused to admit that this 
procedure was in any way useful. This last author claimed that this debate was a 
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temporary distaction that will dissipate once our attention focuses on more useful 
subjects [HAY 96]. 

Let us first take a good look at what constitutes the two-step approach before we 
examine why it is criticized. The basic idea of this approach is based on the  
consideration that it is necessary to ensure the validity of the measures before testing 
the models that use them. A model is, largely, only as good as its measures. Thus, 
Anderson and Gerbing [AND 88] suggested that we consider that the measurement 
model provides an assessment of the convergent and discriminant validity of the 
measurement tools used while the structural model provides the predictive validity. In 
other words, the first tests the hypotheses related to the structures of the measured 
constructs that come from  robust theoretical definitions of these constructs, while the 
second assesses hypotheses on the relationships between these constructs, arising from 
the nomological network theories about these constructs. The logic is then quite simple 
(perhaps even too simple): moving to the nomological perspective (validity) 
imperatively requires that the theoretical definitions of the constructs be valid 
(convergent validity, divergent validity, reliability), a condition that is assumed as the 
prerequisite. Let us take the model presented in Figure 3.7 and assume that we wish 
test it. This is, clearly, a general structural model. The question that then arises is: 
which measurement model do we estimate in the first place? It already contains three, 
presented in Figure 3.8. Must we then evaluate them separately or more simply, do we 
group together into a single factorial model, where all the factors are allowed to covary 
with each other? Figure 3.18 graphically illustrates this option. The first solution is not 
free of difficulties, especially that of being unable to estimate (because of their under-
identification) the increasingly frequent constructs containing three indicators, 
sometime only two (Figure 3.8c) or even a single indicator. Jöreskog and Sörbom 
[JÖR 93] went even further: they recommended that in the framework of this first step 
we first evaluate all the constructs separately, then all the possible pairs of constructs, 
and finally all the constructs that are interrelated with no constraint (Figure 3.18). 
However, in practice, we often limit ourselves to this last option, as it makes it 
possible to provide an instructive comparison between the measurement model and the 
initial structural model, a model considered to be nested within the first. As long as the 
structural portion is not just-identified (thus making both models equivalent and 
making it impossible to compare them) the difference between their respective χ² is 
highly informative. For instance, a non-significant difference when the measurement 
model is seen to be unsatisfactory would show that the structural model does not 
aggravate the model misfit. This signifies that the structural model may not be 
challenged, but this is not certain as, according to this approach, its success remains 
closely tied with the validity of the measures that it uses.  
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Figure 3.18. Respecification of Model 3.7 using CFA to serve as a measurement 
model in the 1st step in the estimation of the general structural model (the variances 
– curved double arrows – of the exogenous latent variables have not been 
represented) 

What remains to be seen now is what must be done when the measurement model 
is judged to be unsatisfactory. Simply abandining the initial model is discarded, thus 
we have the possibility to improve it. While certain modifications allow this, none of 
them is miraculous. On the contrary, however, they must necessarily be accompanied 
by solid theoretical considerations. These revisions could affect both the indicators as 
well as the factors. At the level of the indicators, it is recommended that those whose 
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loading on a factor is low be deleted (i.e. those which do not seem suitable to the 
construct) without, however, neglecting the possibility that these indicators could also 
cross-load on multiple factors. In effect, it is not uncommon for two factors to share 
the same indicator. Another solution that is often chosen to improve a measurement 
model consists of allowing correlation between the indicator error variances (i.e., 
correlated errors). We state here that two or more indicators may share the same 
unknown sources of variation. For example, their redundancy may be one of the 
possible causes [RUB 95]. As regards factors, their numbers are most often affected by 
the revisions. We recommend, of course, that this be scaled down when some strong 
covariations arise between the factors as this is considered to be symptomatic of rather 
poor discriminant validity, that is, a sign that certain constructs overlap with others. On 
the other hand, this number may be scaled up when several indicators are weakly 
loaded on the factors with which they are related. This is symptomatic, here, of 
convergent validity problem that affects the content of measured constructs.  
This means that all the sources of variation in the responses to the indicators are not 
representesd in the measurement model, hence the need to add one or more factors.  

All these revisions, with the exception of the addition or removal of latent factors, are 
greatly facilitated by turning to modification indices, which are available in most 
modeling software. These suggest, as their name indicates, all modifications that could 
improve the overall fit of the model in question. The EQS software ([BEN 95] offers 
two important tests: the Lagrange Multiplier Test, which suggests adding parameters 
that contribute significantly to the model fit, and the Wald Test, which suggest the 
removal of parameters that do not contribute to this fit. However, if this is not 
achieved, it would be better to then simply abandon the initial model. The second 
stage of the estimation will then not take place.  

Let us now turn to the critics. The legitimacy of the modifications in a 
confirmatory procedure is brought up from the outset. The few post hoc theoretical 
justifications offered for modifications cannot give the border between the exploratory 
process and the confirmatory process the illumination that it deserves. Instead, certain 
purists recommend the use of the duly validated measuring instruments. They express 
surprise, moreover, at the fact that we can dissociate measure and theory as the two-
step approach implies. This is another fundamental criticism. But this is not a new 
problem and it remains very complex. In effect, if the measure is a fundamentally 
theoretical process [DIC 94], it is legitimate to wonder about the appropriateness of a 
distinction between theoretical definitions of  constructs and nomological network of 
these constructs, both of which underpin this measure, especially when, as in this case, 
we place ourselves in a confirmatory perspective. Moreover, as Dickes et al. [DIC 94] 
indicate, these two theories do not exclude each other and they can, above all, be 
estimated simultaneously through SEM.  
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Illustration 

If the available data and the sample size allow, the researcher could convert the 
path model (Figure 3.5) into a structural model with latent variables. It will thus take 
the form given in Figure 3.7 in which we can see that each latent variable replacing 
the observed variables in the model in Figure 3.5 is measured by a certain number of 
indicators (items). These, as well as the endogenous latent variables, are 
accompanied by residual variables ("e" = measurement error, "E" = disturbance. 
Figure 3.7 represents what can be called a standard general structural model. One of 
the major benefits of this model is that its estimates take into account measurement 
errors. The estimations obtained are thus purified as they are rid of any measurement 
error. 

A brief presentation of the theoretical model 

Let us recall that this is a model that brings into play the relationships between 
psychological resources (self-esteem, dispositional optimism), aging self-stereotypes 
and physical health among the elderly (N = 331). This is a model that fits within the 
conceptual framework of positive psychology and the sociocognitive approach of 
stereotypes.  

Figure 3.7 presents this model that translates the hypotheses according to which 
a person's psychological resources influence their aging self-stereotypes. These self-
stereotypes in turn exert an influence on one's physical health. 

We can note that the model uses four latent variables (replacing the four observed 
variables in the model in Figure 3.5) and 13 observed variables. Measured by three 
indicators (here there are item parcels) each, both exogenous latent variables, in 
covariation, represent the psychological resources, namely, self-esteem and dispositional 
optimism. Each resource influences the latent variable representing the negative aging 
self-stereotypes. This endogenous latent variable, measured through five items, is 
considered to be a mediator variable between psychological resources and physical 
health (considered to be the ultimate endogenous variable) and measured, here, with two 
indicators, namely: objective health and subjective (perceived) health, where high scores 
are indicative of poor health.  

The two-step approach 

We have adopted the two-step approach to model estimation.  

– The measurement model: the objective of the first step is to estimate the 
measurement model through a CFA that tests a factorial model that freely 
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interrelates the four latent variables. Figure 3.18 offers an illustration and box for 
this following the specification in lavaan syntax.  

STEP 2. Specification of the measurement model (step 1 of the two-step approach, 
Figure 3.18). 
 
model.SPE <- 'esteem =~ es1 + es2 + es3 
optimism =~ lot1 + lot2 + lot3 
stereotype =~ as1 + as2 + as3 + as4 + as5 
health =~ sh + oh 
 
STEP 3. Model estimation using the model-fitting function "cfa". 
 
model.EST <- cfa (model.SPE, data = BASE) 
 
STEP 4. Retrieving the results including the modification indices. 
 
summary (model.EST, fit.measures = TRUE,  
standardized = TRUE, modindices = TRUE) 

 
We will specify here that the estimation method used is the maximum likelihood 

(ML) method and this is because the multivariate normality of the data does not suffer 
from any serious violation, as evidenced by the Mardia coefficient whose value of 2.36 
is lower than 5.00, the threshold value beyond which multivariate normality fails. We 
can also note that lavaan, by default, fixes the first indicator of each latent variable at 
1.00 in order to identify the model.  

Evaluation of the measurement model from step 1 

The values of the overall fit indices of the specified measurement model are 
presented in Table 3.10. First of all, the solution converged normally after 70 
iterations. Next, while, in order to assess the fit of the model, we stopped with χ², 
whose value here is equal to 123.38 with 59 degrees of freedom for N = 331, it is 
clear that this does not argue in favor of our measurement model. Nonetheless, it 
should be recalled that the inflation in the value of χ² could be imputed to the fact 
that this measure is very sensitive to sample size. Thus, it is better to look to other fit 
indices. In effect, an examination of these indices (for example CFI, RMSEA, 
SRMR) shows that this measurement model seems to fit the data well.  

However, such results cannot do away with the need to examine local indices. 
Indeed, on consulting Table 3.10b, we note that the solution obtained suffers from 
no impurity such as inadmissible values or standard errors that are too large. We 
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also note that the non-standardized estimate of the first indicator of each latent 
variable  (that is: as1, sh, es1, lot1) is equal to 1.00 (as it was fixed, a priori). We 
can also see that all the standardized factorial saturations are statistically significant. 
The same holds true for correlations ("covariances") between the latent variables.  

 

Table 3.10a. Overall goodness-of-fit indices of the model in Figure 3.18. 
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Table 3.10b. Local fit indices (parameter estimates) 
of the model in figure 3.18 (contd.) 
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And although the solution seems perfectly acceptable, even allowing us to proceed to 
the second step in estimation, we think it would be highly useful to examine the 
modification indices, for didactic purposes. Reading Table 3.10, which presents a 
sample, shows us that freeing the correlated error between indicators “as1” and “as2” 
would lead to a drop in the value of the χ² equivalent to 13.745. A certain redundancy of 
indicators could be the reason for this. However, we did not judge it useful or justified to 
modify our initial model.  

 

Table 3.10c. Modification indices for the model in Figure 3.18 (contd.) 

– The structural model: the above results allow us to test the structural model 
specified a priori in order to check if it can be tolerated by the data. The 
specification of this model in lavaan syntax appears in the box below. 

STEP 2. Specification of the general structural model (Figure 3.7). 
 
model.SPE <- ' 
 
# Measurement models 
 
esteem =~ es1 + es2 +es3 
optimism = ~ lot1 + lot2 + lot3 
stereotype =~ as1 + as2 + as3 + as4 + as5 
health =~ sh + oh 
 
# Structural model  
 
stereotype ~ esteem + optimism 
health ~ stereotype' 
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STEP 3. Model estimation using the “sem” model-fitting function. 
 
model.EST <- sem (model.SPE, data = BASE) 
 
STEP 4. Retrieving the results including the modification indices. 
 
summary (model.EST, fit.measures = TRUE,  
standardized = TRUE, modindices = TRUE) 

 
We can note that this specification encloses the specification of the measurement 

model (similar to step 1) as well as that of the structural portion of the model, which 
reflects three causal paths: the two predictive effects of self-esteem and optimism on 
aging self-stereotypes (stereotype ~ self-esteem + optimism) and the predictive 
effect of the latter on physical health (health ~ stereotype). To specify the measure 
models, the 'equal to' sign followed by a tilde (=~) is the operator of choice, while 
the tilde is the structural portion of the model. 

We can note, and this is not innocuous, that unlike in the earlier step, the model-
fitting function is no longer "cfa" but is now "sem" (structural equation modeling). As 
concerns the estimation method, the method used is always the maximum likelihood 
(ML) method, even if this does not appear in the specification. This is because this 
method is used by default.  

Evaluation of the solution of the general structural model 

According to the value of χ² available in Table 3.11, our hypothetical model is not 
able to adequately reproduce the observed variances-covariances matrix (χ² (61,  
N= 331) = 126.82, p = 0.000). However, we know that the χ² value is sensitive to sample 
size. Indeed, the values of the overall fit indices seem rather to argue in favor of the fact 
that this model approximates the data reasonably well (CFI = 0.956, RMSA = 0.057, 
SRMR = 0.047). Let us recall that the harmony of the model with the data is better when 
the last two indices are close to zero.  

By converging normally after 61 iterations, a proper solution was obtained. Indeed, 
an examination of the local fit indices reveals no inadmissible or offending estimates 
value, thus allowing the analytical evaluation of the solution.  

However, the most interesting result concerns the structural portion of the model. 
Upon examining Table 3.11 we can note that the path coefficients ("regressions") that 
express the influence of the variable "self-esteem" and of the variable "dispositional 
optimism" on "aging self-stereotypes" are statistically significant. The effect of "self- 
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esteem" (β = – 0.283) is smaller than the effect of optimism (β = – 0.515). However, 
both of these go in the same, expected direction: both these positive psychological 
resources are negatively related to negative aging self-stereotypes. The more one 
displays high self-esteem and high optimism, the less likely they are to hold negative 
aging self-stereotypes. With regard to the predictive effect of the latter on physical health 
(where a high score indicates poor health) it has been shown to be statistically significant 
and high (β = 0.703). This is translated by the existence of a positive effect of negative 
aging self-perceptions on poor physical health. In other words, the more we hold 
negative self-perceptions with respect to our own aging, the more we are/feel in poor 
health. Let us not forget here the inherent limits to any cross-sectional research.  

 

Table 3.11a. Overall goodness-of-fit indices of the general structural model  
(Figure 3.7) 
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Table 3.11b. Local indices of the general structural model (Figure 3.7) (contd.) 

Another result that deserves our attention is that related to the R² of the two 
endogenous latent variables. Table 3.11c presents the values for this. We can see 
here that the portion of the variance of aging self-stereotypes that can be attributed 
to the set of predictive variables is 48% (R² = 0.483), while that of physical health is 
around 49% (R² = 0.494). The remainder can, clearly, be imputed to all the variables 
missing from the model.  
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Table 3.11c. Local indices (here R²) of the model in Figure 3.7 (contd.). 

These results are, however, incomplete as they tell us nothing about the indirect 
effects of psychological resources on physical health through the self-perceptions 
related to aging. As we have seen, one of the shortcomings of lavaan is that it does 
not automatically calculate these effects. For this, it must be made clear in the 
specification of the model as follows. 

STEP 2. Specification of the general structural model with indirect effect. 
 
model.SPE <- ' 
 
# Measurement models 
 
esteem =~ es1 + es2 + es3  
optimism =~ lot1 + lot2 + lot3 
stereotype =~ as1 + as2 + as3 + as4 + as5 
health =~ sh + oh 
 
# Structural model 

stereotype ~ a*esteem + b*optimism 
health ~ c*stereotype 
 
# Indirect effect  
 
indirect:= a*b*c' 
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The standardized indirect effect, displayed in Table 3.11, is 0.103, which is 
statistically significant (p = 0.000). This value is simply the product of three 
standardized effects: – 0.283* – 0.515 *0.703 (that of self-esteem on the self-
stereotypes [a], that of optimism on self-stereotypes [b], and that of self-stereotypes 
on health [c]). Be aware that lavaan uses the Sobel test [SOB 82] to estimate the 
significance (z-value) of an indirect effect. The bootstrap procedure can also be 
used. 

 

Table 3.11d. Results of the indirect effects in the model in Figure 3.7 (contd.) 

We cannot ignore the fact that these results can be appreciated differently; they 
nevertheless confirm the theoretical representation proposed by the authors. In 
effect: their initial model is satisfactory not only at the statistical level, in terms of 
the fit with data, but also at the theoretical level, in terms of plausibility or 
likelihood. This model may be seen as a certain approximation of reality, even if it 
only partially explains the phenomenon of the role of aging self-stereotypes among 
the elderly. Moreover, it perhaps isn't the only model that can adjust the data. For 
example, an alternative model could be proposed. This is a model where health will 
play the mediator role while the aging self-stereotypes will play the role of the 
ultimate endogenous variable. We will then be in the presence of equivalent models 
that will be difficult to separate. The reader can refer to Bentler and Satorra  
[BEN 10b] for the technical aspects related to equivalent models, and can refer to 
Hershberger and Marcoulides [HER 13] for more on the selection criteria between 
these models. 

3.6. Hybrid models 

By hybrid model, we mean here any model that combines measured and latent 
variables as predictive variables, both exogenous as well as endogenous. Despite 
their limitations, these models translate the great flexibility of structural equation 
modeling. The MIMIC model (Figure 3.15) is in itself a hybrid model. The model 
presented in Figure 3.19 is more complex than an MIMIC model since it encloses 
two latent variables, including one that plays a mediator role between manifest 
exogenous variables (i.e. "self-esteem" and "optimism") and another ultimate 
endogenous latent variable (i.e. "health"). Taking the same conceptual model that 
was used to illustrate path models and general structural models (Figures 3.5 and 
3.7) this is simply a mix of them. This is a hybrid model, described by Bentler  
[BEN 95] as a non-standard model. 
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Figure 3.19. Hybrid structural model 

3.7. Measure with a single-item indicator 

Excessively minimalist version of multi-item scales, single-item scales seem to 
be breezing ahead. An example of a measure of perceived health with a single item 
whose success cannot be denied: "in general, how would you rate your health?" 
accompanied by a response scale with 5 (or 7) points ranging from "very bad" to 
"excellent". 

We are not interested here in the psychometric properties of single-item measures, 
that is  the reliability and validity of the scores obtained through single-item scales (for 
more on this, see, among others, [BER 07] or [PET 13]). Our interest here is more on 
how we can use this within a general structural model and how we can specify the 
particularities with lavaan.  

There are two ways of integrating these measures in a general structural model. 
The first, as we have just seen, consists of specifying a hybrid model whose scores 
on single-item scales are used as measured variables, both exogenous as well as 
endogenous. The second consists of converting the single-item measure into a latent 
variable. To do this, there are two options that are necessary for the identification of 
such a latent variable.  

Let us take the example of a construct, η (for example, perceived health) 
measured by a single item, X; this measurement model is translated by the following 
equation: 

X = λη + ε [3.8] 
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where: 

– λ is the loading of X on the latent factor η; 

– ε is the measurement error associated with the item X. 

 

Figure 3.20. Measurement model with a single item/indicator  

This measurement model, graphically illustrated in Figure 3.20, is not identified. It 
contains three parameters free to be estimated. Namely: Var η (the variance of the latent 
variable, which is equal to 1.00 in the case of standardization), (the factor loading of  
the item) and Var ε (the variance of the measurement error). And as we have only a 
single piece of information, namely, the variance of X (Var X), the model is then under-
identified. In order to identify it (or rather, just-identify, here) and make it fit to be 
estimated, it must be posited that the parameter relating the unique indicator to its latent 
variable is equal to 1.00 ( = 1.00), and its measurement error must be set to zero (Var  
ε = 0.00). Thus, the measured variable is considered to have no error and the latent 
variable (η) is considered to be a dummy variable. 

Such an assumption, whose retranscription in lavaan syntax is shown below, is 
plausible for certain measures such as size or age (when this is duly verified). 
However, this is much less so when the single item is the indicator of a 
psychological construct such as perceived health or life satisfaction.  

X 

ε 

Var ε 

η 

Var η 

λ 

1        
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STEP 2. Specification of the single-item measurement model, Figure 3.20 with zero 
error variance.  
 
model.SPE <- 'η =~ 1*X 
                  X ~~ 0*X' # Variance of the error associated  
with X set to zero (Var ε = 0). 

 
The best hypothesis in this last case: it is possible to take into account the 

measurement error of an item used as the unique representative of a construct by setting 
a priori its error variance,  based on its assumed and proven reliability (test-retest 
reliability, for example) and doing this in the following manner [JÖR 89]: 

(1 – rxx)*s² [3.9] 

where: 

– rxx = the recognized reliability of the single item; 

– s² = the variance of the single item. 

For example, if the variance of the single indicator X is equal to 92.78 and the 
test-retest reliability is estimated to be 0.70, we can set its error variance to   
(1 - 0.70) (92.78) = 27.83 and transcribe it in syntax lavaan as follows: 

STEP 2. Specification of the single-item measure, Figure 3.20 with non-zero error 
variance.  
model.SPE <- 'η =~ 1*X 
              X ~~ 27,83*X'  # error variance 
associated with X fixed, a priori (here Var ε = 27.83). 

 
In both cases, the model is saturated, that is, just-identified (df=0) and can find its 

place in a general structural model that brings various latent variables into relation. 
Nonetheless, the second option seems closer to the spirit of SEM, where one of the 
objectives is take into account the measurement errors of the latent variables within the 
model that is being tested. 

3.8. General structural model including single-item latent variables with 
a single indicator  

Let us return to the hybrid model in Figure 3.19 and convert the two exogenous 
variables into single-item latent variables. The result is a non-hybrid structural  
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model illustrated in Figure 3.21. Given that there is no difference at the 
psychometric level between an observed variable as used in the model in Figure 3.19 
and a single-item latent variable whose error variance was declared to be zero, are 
they then interchangeable? 

The response is in the affirmative, as the latent variable here is, in a way, a 
dummy (mute) variable. What remains to be seen is whether the results of the two 
models are equivalent. The response here is also in the affirmative. First, a hybrid 
model is no more and no less exposed than other models to identification problems. 
Next, a hybrid model preserves the same number of degrees of freedom as its non-
hybrid counterpart. Finally, the estimation of the parameters will only be slightly 
affected, if at all, by the hybridization.  

 

Figure 3.21. Structural model including latent variables with a single item 
(the error variance  of each single item is set to zero). 

3.9. Conclusion 

At the end of this chapter, it seems useful to summarize the procedure leading to 
the validation of a model using structural equations modeling. 

1- The starting point is the development of a conceptual representation that, based 
on one or more theories, brings into play certain relationships between a set of 
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constructs. The diagram is useful in formalizing this conceptual representation. In 
effect, the confirmatory nature of the procedure requires that the theoretical 
specification of the model precedes the collection of data and not the other way 
around. This step is crucial, as it is responsible for the choice of measures of the 
constructs used in the specified model. Such a choice is important because the fit of 
the model depends on it, as well as the choice of the number of indicators for each 
latent variable. This is also where the rule of parsimony  comes in: there is no point in 
complicating a model with the sole objective of achieving a statistical fit. Similarly, it 
is absurd to convert a recursive model into a non-recursive model to camouflage 
theoretical doubts concerning the predictive relationships. It is therefore preferable to 
propose several alternative models so that, finally, the one that best fits the data can be 
chosen. Furthermore, it is also recommended that models that are equivalent to the 
model specified by the researcher be mentioned. Models that differ in terms of the 
predictive links that they hypothesize substantially between the variables studied, but 
which generate identical estimates, that is the same model-implied variance-covariance 
matrix, the same number of degrees of freedom, and the same goodness-of-fit indices 
[HER 13] are said to be equivalent. One of the proposed solutions in order to limit the 
number of equivalent models is to specify, a priori, hypothetical models that include 
variables (for example, instrumental (or control)) that are not related to all the 
variables studied. This is to avoid specifying hypothetical models where everything 
would be related to everything else. A model is chosen, first of all, based on theoretical 
and conceptual considerations. Certain statistical indices, which are difficult to 
implement, have been suggested in order to distinguish between equivalent models 
[RAY 01]. Others recommend comparing the R² of the endogenous variables in order 
to distinguish between the equivalent models (for more on this subject, see [WIL 12]).  

2- Going on to estimation in two steps: first the measurement model and then the 
structural model.  

3- Evaluating the measurement model based on the Overall goodness-of-fit indices 
and local fit indices:  if the results are satisfactory, we can then move on to step 5.  

4- Improving the measurement model by taking into account the modification 
indices and theoretical considerations: after each modification, we must respecify 
the model and go back to step 3. There is no point in statistical obstinacy, to use any 
means to get the measurement model to fit the data.  

5- Evaluation the structural model by examining the overall goodness-of-fit 
indices as well as the local fit indices : if the solution is proper and satisfactory, we 
can then move on to step 7.  
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3.10. Further reading 

For readers who may wish to study the concepts discussed in this chapter in 
greater detail, we refer the following books: 

BOLLEN K.A., Structural Equations with Latent Variables, Wiley, New York, 1989. 

BOLLEN K.A., LONG J.S., Testing Structural Equation Models, Sage Publications, New York, 
1993. 

BROWN T.A., Confirmatory Factor Analysis for Applied Research, 2nd edition, Guilford Press, 
New York, 2015. 

KLINE R.B., Principles and Practice of Structural Equation Modeling, 4th edition, Guilford 
Press, New York, 2016. 

LOEHLIN J.C., Latent Variable Models: An Introduction to Factor, Path, and Structural 
Equation Analysis, 4th edition, Lawrence Erlbaum Associates Publishers, Mahwah, 2004. 

MARUYAMA M.G., Basics of Structural Equation Modeling, Sage Publications, New York, 
1998.  
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Advanced Topics: Principles  
and Applications 

The extensions of structural equation modeling are multiple, and its applications 
increasingly numerous and varied. We should immediately recognize that it is 
impossible to draw up an inventory. The growing interest that has not ceased to be 
shown in these methods has led to a considerable broadening of their application in 
various scientific domains and disciplines. In addition to complex longitudinal 
hierarchical data (multilevel; [MUT 02a]), they are also applied now to experimental 
data [BLA 09, PLO 04], or indeed to both simultaneously [MCA 07], to 
neuroimaging data [MCI 12] and clinical medical data [ZHA 17]. This is not at all 
trivial, above all when it is known that these methods were destined instead for 
domains where the possibilities for direct experimental verifications could not, for 
material and/or deontological reasons, be envisaged, and in which it is necessary  to 
proceed otherwise to fully consider relationships between the different variables 
studied. Structural equation modeling was, undoubtedly, the right tool. 

Here, we will merely draw out the simplest extensions; so simple that they 
sometimes cease to be considered as extensions. And their simplicity is only as great as 
their immense flexibility. Judge for yourself, using the different examples throughout 
this chapter. Without forgetting that today’s extensions will be quickly and fortunately 
obsolete tomorrow. 

4.1. Multigroup analysis 

Comparing several groups from different aspects is a common procedure in 
scientific research (for example analysis of variance [ANOVA], multivariate analysis 
of variance [MANOVA], multivariate analysis of covariance [MANCOVA], repeated 

Structural Equation Modeling with lavaan,  

First Edition. Kamel Gana and Guillaume Broc. 
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measures analysis of variance [RANOVA]). Comparing them through the lens of one 
or more theoretical models is much less so, since, to our knowledge, only structural 
equation modeling can make this possible. The primary aim for such a comparison is 
to estimate a model’s invariance across populations, thus making it possible to 
establish the validity of the theoretical construction, which the model is the 
representation of. The question is whether estimation of the parameters of the posited 
model would vary across the groups involved. Let us put this differently: multigroup 
analysis, also referred to as “multisample analysis”, makes it possible to test a model’s 
plausibility in different groups and is thus a fairly economical way for detecting 
differences between them. The fact that a model proves applicable or not to other 
populations makes it possible, in principle, to judge the generalizeability, or otherwise, 
of the hypothetical assertions it conveys. It is clear that a theoretical representation is 
even more worthwhile when/if it is suitable for several samples, as the worst-case 
scenario would be to finish with as many models as samples. 

Thus formulated, this analysis would instead resemble a cross-validation procedure: 
a model applied to a sample will be valid for another, thus making it possible to establish 
an already proven model’s stability and invariance. But, although this end is evidently 
not excluded, multigroup analysis is distinguished by the fact that estimation of the 
model is not obtained for each group separately and successively, but rather for all the 
groups analyzed simultaneously. Of course, we could be content with the first option and 
examine the results of each group separately without being able to state their equivalence 
or dissimilarity statistically. Since it is clear, for example, that the absence of differences 
between the individual parameters from one group to another absolutely does not mean 
that these parameters are equivalent. Indeed, the move from separate estimations to 
simultaneous consideration of all the groups involved is such a good opportunity and 
such flexibility is offered by structural equation modeling that it seems inconceivable to 
us to dispense with it/ignore it, especially as it allows us to test parameter equality across 
groups, and above all it provides a statistical test making it possible to decide on the 
comparability of these groups. 

There is scarcely any need to recall that what is being compared is really a network 
of relationships between variables specified by the researcher. This remark calls for 
another, just as fundamental here: multigroup analysis necessarily requires use of the 
variance-covariance matrix rather than the correlation matrix. The reason for this is 
very simple: given that, in a correlation matrix, all the variances were fixed at 100, 
they bring nothing to the comparison. Although they are neither the only information 
available nor the only information needed for the analysis (the measured variable 
means are also necessary), the variances of the variables in each of the groups studied 
will be, for comparison, opposed. We will admit that they are subject to differences, and 
starting from there, that they are useful and interpretable sources of information. 
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Similarly, we agree on recognizing that use of a correlation matrix leads to incorrect 
solutions when parameter equality constraints are imposed, which is as it happens is the 
case in multigroup analyses, and which must be discussed later. It is preferable, here too, 
to analyze the variance-covariance matrix and then standardize the solution. 

Multigroup analysis applies to/covers all models that fall within the scope of 
structural equation modeling. It applies to path models, general structural models, 
measurement models and latent growth models, among others. It is the measurement 
models that we select for this chapter as they take a considerable place in applied 
psychometrics. Isn’t a measure’s factorial structure at the heart of the definitional 
theory that underlines and founds this measure? We have chosen to show how 
multigroup analysis services the study and examination of this structure. This is called 
a multigroup confirmatory factor analysis (MG-CFA). It is an extension of a simple 
CFA, to the extent that it becomes an analysis of mean structures involving estimation 
of item intercepts and latent variable means, and their intergroup comparison. An 
indicator intercept (for example an item), as has already been seen, refers to its 
estimated mean when the factor on which it depends is equal to zero (see [KLI 16] for 
mathematical details relating to indicator intercepts). 

Recall that a construct’s structure refers to different sources of variation in the 
responses to the items that define and represent it. This structure is one-dimensional 
where there is only one source of variation identified; it is, however, 
multidimensional when there are several. Each source of variation is a dimension 
(factor). Correlated between one another, these dimensions give body to a 
multidimensional oblique solution. 

Testing measurement and structural invariance participates in the intra-construct 
validation process which seeks to show that a construct’s structure and metrics are 
independent of the population to which it applies. This invariance is posed even more 
sharply as the comparison concerns culturally different groups. Do items on a 
questionnaire measure the same construct with the different groups and sub-groups to 
which it is administered? 

Measurement invariance concerns indicator characteristics (for example items), 
that is their factor loadings, their intercepts and their measurement error variances, 
whereas the structural invariance, which is not necessary for the quality of a 
measure, deals with the characteristics of the model’s latent variables, that is their 
variances, covariances and means. But there are several degrees of invariance in a 
measure [REN 98], for which the terminology varies from one author to another: 

– a configural invariance which refers to intergroup equivalence of the factor 
structure (i.e. equal form). Testing such an invariance means trying to answer the 
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question of how we can know if the groups at hand share the same general factorial 
pattern of the measure (i.e. the same number of factors and the same factorial pattern). 
This means the least restrictive model, in which no equality constraint has been 
imposed on the groups. We only formulate the hypothesis of the existence of the same 
numbers of factors and the same loading patterns in the groups compared. This model 
is doubly important: it is the baseline model on which the remainder of the tests 
depend, as if this model, the least restrictive one, fails to adjust the data there is 
scarcely any chance for less restrictive models to reach it; 

– a weak invariance, also referred to as metric invariance, which assumes 
intergroup equality of factor loadings. Testing this invariance means trying to 
answer the question of whether the groups at hand display the same factor loadings. 
Such an invariance, which is expressed by intergroup equivalence of relationships 
between the items and the latent variables on which they depend, indicates that the 
different groups share the same significance for the items composing a measure; 

– a strong invariance, also known as scalar invariance, which assumes intergroup 
equivalence as much for factor loadings as for those of items’ intercepts. This 
condition will integrate the means of the items measured in the analysis (hence the 
need to introduce them at the same time as the variance-covariance matrix in the 
absence of raw data). Such a condition, cumulating in the configural invariance, that of 
the factor loadings, but also those of the intercepts, indicates that, for a given value of 
the latent variable, the scores for items are assumed to be identical in the different 
groups at hand. In other words, a unit variation at the level of the latent variable is 
linked to an identical change at the level of the scores for items in the groups at hand. 
Thus, comparison of scores to these groups’ construct takes its full meaning here, and 
if there is a difference, it means a real difference at the level of the construct and not a 
difference that can be imputed to the way it is measured; 

– a strict invariance that assumes intergroup equality at once in items’ factor 
loadings, in their intercept and their measurement error variance. This fairly 
demanding condition is rarely reached, as it assumes that the measurement reliability 
is perfect and identical among the groups at hand and that the measurement is not 
affected by any bias. Each item’s variance is thus explained identically in each 
group at hand, and the construct is measured identically in each group. The scores’ 
intergroup differences in measure convey the real differences relating to the 
construct measured. 

An MG-CFA obeys a sequence wherein passing from one stage to another requires 
successfully passing through the previous step: (1) applying a simple CFA to each 
group at hand separately (i.e. there will be as many CFAs as groups), as it requires that 
the posited model (i.e. whose invariance we wish to test) should be tolerated by each  
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group at hand; (2) testing the configural invariance which consists of evaluating 
simultaneously and without any equality constraint the model that has just been 
estimated separately; (3) testing the weak invariance which consists of constraining all 
the factor loadings in the groups to equality (or in some cases only some factor 
loadings, and we speak here of “partial invariance”. We will return to this later); (4) 
testing the strong invariance which consists of raising the previous level of 
equivalence by adding to it an intergroup equality constraint involving items’ 
intercepts; (5) testing, if necessary, (and desirable) the strict invariance which consists 
of adding to all the previous constraints on intergroup equality of measurement error 
variances; (6) testing the equivalence across groups of latent variable means; (7) 
testing the equivalence across groups of latent variable variances, and (8) the intergroup 
invariance of covariances between latent factors (where there is a multidimensional 
model). 

The first five steps corresponding to evaluation of the measurement invariance are 
most commonly used in the context of MG-CFA analyses. In addition, satisfying the first 
four stages is more than enough to admit a measurement invariance. Stages 6, 7 and 8 
correspond to tests of the hypothesis of structural invariance. 

The shift from one step to another is subject to a test, which involves examining 
the statistical significance of the difference in the values of χ² for two nested models 
(∆χ²), depending on the difference in the degrees of freedom (∆df). We compare the 
χ² of the weak invariance to that of the configural invariance. We then compare the 
χ² of the strong invariance to that of the weak invariance. Finally, we compare χ² of 
the strict invariance to that of the strong invariance. When the delta-χ² (∆χ²) is 
statistically significant (to at least p < 0.05), it is legitimate to conclude that the 
additional constraints imposed on the model (for example, intergroup equality of the 
items’ intercepts) have deteriorated its overall fit so that there is no intergroup 
invariance (configural, scalar or strict). 

Although ∆χ² remains the most commonly used test for judging the probability 
of the invariance, differences relating to some fit indices such as CFI (∆CFI = delta-
CFI) and RMSEA (∆RMSEA = delta-RMSEA) have also been suggested. 

A ∆CFI ≤ 0.01 indicates that the null hypothesis of invariance cannot be rejected. 
A differential higher than 0.01 is indicative of a deterioration in the model that has 
been subject to the new equality constraints, thus indicating the improbability of the 
invariance. In the same vein, a minimal ∆RMSEA is indicative of the invariance’s 
plausibility. Other tests look at the RMSEAs’ confidence interval. If the values of the 
two models in competition fall in the same interval, it is assumed that there has not 
been any deterioration in fit of the model subject to additional equality constraints. 
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As an illustration, we take here the dispositional hope scale whose factorial 
structure was studied in Chapter 3 of this book (Figure 3.11, Chapter 3). We subject 
this structure to a MG-CFA to test its measurement invariance across gender. 

Once the hypothetical factorial structure is specified, here as it happens it is two-
factor (Figure 3.11), and before proceeding to the hypothesis tests on the equivalence 
across groups, it is necessary to verify separately the model fit for each of the two sexes. 
We agree that it is useless to compare groups from the angle of a model when this is not 
acceptable in both groups. It is therefore vital, first to test the baseline model, which will 
then be subject to equivalence tests across groups. These tests are carried out using 
simultaneous analyses of the model, applied to several groups. It is however usual to test, 
successively a series of equivalence hypotheses, the logic for which we have just 
presented: to go from less equivalence to more equivalence across groups, on the 
parameters forming a measurement model. We will now reveal these stages, step by step. 

4.1.1. The steps of MG-CFA 

4.1.1.1. MG-CFA stage one: testing the CFA model for each group separately  

We will first specify the model’s parameters in lavaan syntax. The box below 
provides the details of this specification. We recall here, and this will be the case 
throughout this section, that the “Steps” refer to the main stages of using lavaan 
detailed in the first part of this book. We also recall that the comments that follow the 
hashtag (#) are not part of the commands, but explain them. 

STEP 1. Importing data and creating subsamples. 
 
#1. Create a subsample with data on women. 
 
women <- subset (BASE, sex == "1") 
 
#2. Create a subsample with data on men. 
 
men <- subset (BASE, sex == "2") 
 
STEP 2. Specifying the two-factor model of the hope scale (Figure 3.11). 
 
model.SPE <- 'pathways =~ hop.p1 +  hop.p3 + hop.p4  
+ hop.p5 
agency =~ hop.a2 + hop.a6 + hop.a7 + hop.a8' 
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STEP 3. Model estimation in women subsample. 

model.EST <- cfa (model.SPE, data = women, estimator  
= "MLR") 
 
STEP 3 REPEAT. Model estimation in men subsample. 

model.EST <- cfa (model.SPE, data = men, estimator  
= "MLR") 

 
The stage of testing the CFA model separately in each group requires either the 

use of a dataset specific to each group, or a partitioning of the dataset containing the 
shared data to create two sub-samples of it, one regrouping data for women and the 
other data for men. If we opt for the second solution, sections #1 and #2 show the 
way we must proceed to achieve it. We detail the elements in section #1: the 
notification “women” is the name chosen for the female sub-sample initially coded 
"1" in our group variable “sex”; “subset” is a function of R making it possible to 
create a sub-sample from our “BASE” dataset imported in step 1. “sex == "1"” 
makes it possible to create the sub-sample regrouping all the individuals coded "1" 
with the variable “sex”. It is the same for men, for whom the sub-sample regroups 
all the individuals coded "2" with the variable “sex”. Each of these sub-samples will 
be used in the place of “BASE” to estimate separately the model for each group, as 
the commands figuring on steps 3 and 3bis in the box below show. The estimator 
MLR has been retained, as this was the case for the two-factor model estimated  
previously (see Figure 3.11). 

We will spare the reader the details of the evaluation of the two solutions. It will 
only be said that as the model’s plausibility for each group is confirmed, and the 
modifications consequently useless, we can therefore move to the following step. It 
will be recalled above all that the number of degrees of freedom for each group was 
19 (see the results of the model represented by Figure 3.11, Chapter 3). 

4.1.1.2. MG-CFA stage 2: configural invariance test   

The box below synthesizes the commands for each stage. It will be noted that 
step 2 of the two-factor models’ specification remains unchanged. The essential part 
is found in step 3, the stage specifying the model’s estimation.  

We see first that the estimation covers all the data (data = BASE). We then 
found, and this is absolutely not a mere detail, a fundamental indication: “group = 
"sex"” without which MG-CFA will not take place, meaning here that it is a 
multigroup analysis, and that it is the variable “sex” in our dataset (BASE) that will 
differentiate the groups in competition. 
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STEP 2. Specifying the two-factor model of the hope scale (Figure 3.11,  
Chapter 3). 

model.SPE <- 'pathways =~ hop.p1 + hop.p3 + hop.p4   
+ hop.p5 
agency =~ hop.a2 + hop.a6 + hop.a7 + hop.a8' 
STEP 3. Estimating the measurement configural invariance. 

configural <- cfa (model.SPE, data = BASE, group  
= "sex", estimator = "MLR") 
STEP 4.  Retrieving the results including the modification indices. 

summary (configural, fit.meaures = T) 
 
This step is essential, if it passes the test for moving stages, in other words if the 

configural invariance is seen to be tolerated by the data, we can then move to the 
following stage and thus continue the MG-CFA. As it happens, this was the case 
here, the goodness-of fit indices show: robust-CFI = 0.972, robust-TLI = 0.959, 
robust-RMSEA = 0.043 [90% CI = 0.000 – 0.073]. Also, reported will be χML(38) = 
53.77, p = 0.046 and χrobust(38) = 48.71, p = 0.114. The reader may perhaps be 
surprised to see the number of df equal to 38. We will return to this, commenting 
further in Table 4.3. 

4.1.1.3. MG-CFA stage three: weak invariance test hypothesis 

The weak invariance test, which is the hypothesis of equality across groups (sexes 
here) of factor loadings, requires the use of a new command at the estimation step: 
“group.equal = "loadings"”; "group.equal" means “equality across groups”, and 
"loadings" means that this equality constraint concerns the factor loadings. It will be 
noted that the two-factor model specified remains unchanged. 

STEP 2. Specifying the two-factor model of the hope scale (Figure 3.11). 

model.SPE <- 'pathways =~ hop.p1 + hop.p3 + hop.p4 + 
hop.p5 
agency =~ hop.a2 + hop.a6 + hop.a7 + hop.a8' 

STEP 3. Estimating the weak measurement invariance. 

weak <- cfa (model.SPE, data = BASE, group = "sex", 
group.equal = "loadings", estimator = "MLR") 

If, compared to the previous model (i.e. ∆χ², ∆df), this stage does not  
cause deterioration in model fit, it is therefore permissible to move to the following  
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stage of invariance tests. We will see later how to proceed to compare the models’  
goodness-of-fit. 

4.1.1.4. MG-CFA stage 4: strong invariance test hypothesis 

The strong invariance test which makes the hypothesis of equality across groups both 
of factor loadings and indicator intercepts (estimated means) requires the command from 
the previous stage to be completed: group.equal = c ("loadings", "intercepts"). Thus, 
group equality across ("group.equal") concerns/involves the factor loadings ("loadings") 
as well as the indicator intercepts. The box below shows the details. 

STEP 2. Specifying the two-factor model of the hope scale (Figure 3.11). 

model.SPE <- 'pathways =~ hop.p1 + hop.p3 + hop.p4 + 
hop.p5 
agency =~ hop.a2 + hop.a6 + hop.a7 + hop.a8' 
 
STEP 3. Estimating the strong measurement invariance. 

strong <- cfa (model.SPE, data = BASE, group = "sex", 
group.equal = c ("loadings","intercepts"), estimator = 
"MLR") 

If, compared to the previous model (i.e. ∆χ², ∆df), this stage will not degrade the 
model’s fit, we are then authorized to move to the following stage of invariance 
tests. Comparison of the models’ fit will be addressed further. 

4.1.1.5. MG-CFA stage 5: strict invariance test hypothesis 

An additional equality constraint, that relating to the indicators’ measurement 
error variances "residuals", is added to the previous ones, thus resulting in reflecting 
the strict invariance hypothesis: group.equal = c ("loadings", "intercepts", 
"residuals"). 

STEP 2. Specifying the two-factor model of the hope scale (Figure 3.11). 

model.SPE <- 'pathways =~ hop.p1 + hop.p3 + hop.p4 + 
hop.p5 
agency =~ hop.a2 + hop.a6 + hop.a7 + hop.a8' 
 
STEP 3. Estimating the strict measurement invariance. 

strict <- cfa (model.SPE, data = BASE, group = "sex", 
group.equal = c ( "loadings", "intercepts", 
"residual"), estimator = "MLR") 



166     Structural Equation Modeling with lavaan 

4.1.1.6. MG-CFA stages 6–7–8: tests for structural invariance hypotheses 

These stages form part of the tests for the hypothesis of structural invariance  
whose requirements have just been added to those required for the measurement 
invariance. Successively, we move from one stage to another. Let’s look at them one 
by one: 

– at stage 6, the equality of latent variable means is added to the previous 
constraints: group.equal = c ("loadings", "intercepts", "residuals", "means"); 

– at stage 7, the equality of latent variable variances is added: group.equal = 
c ("loadings", "intercepts", "residuals", "means", "lv.variances"); 

– at stage 8, the equality of the covariances between the latent variables is added: 
group.equal = c ("loadings", "intercepts", "residuals", "means", "lv.variances", 
"lv.covariances"). 

It will be specified that "means" refers to the latent variable means, "lv.variances" 
indicates latent variable variances the latent variable variances (lv = latent variable) 
and "lv.covariances" designates latent variable correlations/covariances. 

It will also be remembered that we move from one stage to another when the 
added equality constraints do not cause the model to deteriorate. 

STEP 2. Specifying the two-factor model of the hope scale (Figure 3.11). 

model.SPE <- 'pathways =~ hop.p1 + hop.p3 + hop.p4 + 
hop.p5 
agency =~ hop.a2 + hop.a6 + hop.a7 + hop.a8' 
STEP 3. Estimating the measurement and structural invariance. 

structural <- cfa (model.SPE, data = BASE, group = 
"sex", group.equal = c ("loadings", "intercepts", 
"residuals", "means", "lv.variances", 
"lv.covariances"), estimator = "MLR") 

4.1.2. Model solutions and model comparison tests  

Here, we will merely examine the measurement invariance (configural, weak, strong 
and strict). Two options are offered to the user to obtain solutions for different estimated 
invariance models and to perform model fit comparison. 

The first involves turning to the usual “summary ( )” function to obtain results 
for each model estimated separately (see sections #1 to #4 in the box below) and to 
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The first column in Table 4.1 lists the models subject to the comparison test. 
Column “Df” displays the number of their respective degrees of freedom;  
those of AIC and BIC offer the values of two goodness-of-fit indices used to decide 
between the models in competition (the better model fit, the weaker the values of 
these indices); column “Chisq” displays the values of χ²; column “Chisqdiff” shows 
Δχ² (χ² of the model – χ² of the previous model) along with Δdf given to the column 
“Dfdiff”; the last column, which is far from being the most interesting, shows the p-
value of Δχ² so as to be able to judge the statistical significance. And it will be noted 
that despite the use of the MLR estimator, the χ² difference test concerns the values 
of χ²ML. These differences are corrected following the Satorra-Bentler formula  
[SAT 01]. Indeed, the value 1.72, which quantifies the difference between the χ² of 
the “weak” model and that of the “configural” model does not correspond exactly to 
55.81 – 53.77 (= 2.04). This difference of 2.04 has been scaled to obtain 1.72. 
Finally, it will be noted that lavaan does not offer ΔCFI and ΔRMSEA. 

From the results, it can be seen that the equality constraints imposed to test a 
weak invariance have not affected the model fit relative to  the configural solution. 
Indeed, the differential of their respective χ² (Δχ² = 1.72), compared to that 
corresponding to their respective degrees of freedom (Δdf = 6) has proven not to be 
significant (p = 0.942). This suggests that the hypothesis of factor loading equality 
in the two groups is plausible. Such a result means we can test the hypothesis of a 
much stronger invariance and ask whether or not this will deteriorate the model’s fit. 
To know this, it is enough to compare the strong invariance model to the weak 
invariance model. The differential of their respective χ² (Δχ² = 9.09), compared to 
that corresponding to their respective degrees of freedom (Δdf = 6), has revealed 
itself not to be significant (p = 0.168). Thus, the hypothesis of a strong invariance 
reflecting factor loading aquality as well as equality of indicators’ intercepts, is 
plaisible. If we now compare the overall fit of the strict invariance model with that 
of the strong invariance model (χ² (58) = 76.31) with that of strong invariance 
(χ²(50) = 65.13), it will be noted that the additional equality constraints that affect 
the first relative to the second have not affected its overall fit, since Δχ² scaled = 
6.55, with a Δdf = 8, is not statistically significant (p = 0.585). 

The second option that the user of lavaan and R has to obtain model comparison 
tests is to use the “measurementInvariance ( )”, function which has unfortunately 
ceased to be an integrated lavaan function to become a “semTools” function. This 
function offers a shortcut making it possible to estimate automatically the different 
invariance models (configural, weak, strong, LV means) and to compare their 
goodness-of-fit. It will be noted, and this is very odd, that the strict invariance is not 
considered automatically, and to perform goodness-of-fit comparison. The box 
below provides the necessary details. 
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STEP 2. Specifying the two-factor model of the hope scale (Figure 3.11). 

> model.SPE <- 'pathways =~ hop.p1 + hop.p3 + hop.p4 + 
hop.p5 
agency =~ hop.a2 + hop.a6 + hop.a7 + hop.a8' 
 
#1. Open the semTools package. 

> library (semTools) 
 
STEP 3. Comparison of invariance models using semTools’  “measurement 
Invariance”. 

> models <- measurementInvariance (model.SPE, data = 
BASE, group = "sex", strict = TRUE, estimator = "MLR") 

# If necessary, obtain the χ² of each invariance model separately. 

> models [[1]] 
> models [[2]] 
> models [[3]] 
> models [[4]] 
> models [[5]] 

 
Let us stop for a moment at STEP 3, as the specified two-factor model remains 

unchanged. The object is arbitrarily called “models”; “measurementInvariance” 
represents the semTools function that carries out the invariance  tests; between 
parentheses, there are the options: “model.SPE” is the name of the model specified to 
be tested for invariance, “BASE” is the name of the dataset needed to estimate the 
model, “group = "sex"” specifies the  group variable and finally, “strict = TRUE” is a 
request to test the strict invariance . 

The “measurementInvariance” function also displays the advantage of offering 
ΔCFIs and ΔRMSEAs. Table 4.2 shows a glimpse. At the top of this table, the five 
invariance models are recalled: (1) "configural", (2) "loadings" = weak invariance, 
(3) "intercepts" = strong invariance, (4) "residuals" = strict invariance, and  
(5) "means" = structural invariance of the means of the latent variables. In the middle 
of the table, we find the χ² difference test, and at the bottom of the table, the tests for 
the differences in CFI and RMSEAs. 

There, you can read that the only noticeable deterioration in the fit of the models  
in competition is caused by the equality constraint of latent means  carried by model 5  
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(fit.means). Indeed, the Δχ² of models 4 and 5, which is equal to 17.1946 with a Δdf 
equal to 2, is revealed to be statistically significant (p = 0.0001846), indicating that the 
equality across groups of latent variable means “pathways” and “agency” is unlikely. 
The ΔCFIs and ΔRMSEAs corroborate this result. It is clear that CFI of model 5 
(0.949) shows substantial drop compared to the previous model (“fit.residuals”), which 
will serve it as a comparison model (0.984). It is the same for the RMSEA, which has 
seen its value increase, moving from 0.027 to 0.046 due to the intergroup equality 
constraint of the latent variable means. 

The "models [[]]" inventory makes it possible to obtained separately the χ² of 
each invariance model, of which Table 4.3 offers only those, as an illustration, of the 
configural model[[1]]. 

 

Table 4.2. Results obtained with the “measurementInvariance” function 
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Table 4.3. Example of the results of χ² for each group for each invariance model 

(Model [[1]] = configural model; 1 = women group  ; 2 = men group) 

Table 4.3 shows the global χ² as well as each group’s χ² (1 = women, 2 = men) for 
the model [[1]], in this case the configural model. It will be specified that the value 
of χ² is equal to the sum of χ² of the groups at hand (χ²ML = 53.77 = 24.24 + 29.53). 
It is the same for the number of degrees of freedom (df = 19 + 19 = 38). 

These results, leading to a strict invariance in the measure of dispositional hope 
scale between men and women, enable us to conclude that there is no gender bias 
affecting answers to this scale. This scale therefore evaluates the same construct, in the 
same way in both the groups. This absolutely does not mean that there are no 
differences between men and women relating to their dispositional hope. This means 
that if there are differences, they can be imputed to real differences at the level of the 
construct itself and not to gender biases affecting the measure. This scale can therefore 
be called gender-free, that is “gender-neutral scale”. 

4.1.3. Total invariance versus partial invariance  

A two-fold question is permissible here. If weak invariance, considered as the 
minimal condition of measurement invariance, is not confirmed, must we then 
abandon the entire procedure underway, or indeed can the non-invariant items be 
detected, and so settle with a partial invariance, tolerating the fact that some factor 
loadings can differ from one group to another? 

Researchers like Byrne et al. [BYR 89] recommend such a relaxation, as it seems 
difficult to reach a total factorial invariance, of course on the condition that the number 
of non-invariant items is reasonable relative to the number of invariant items. We can in 
fact, by recourse to modification indices, ensure that each equality constraint imposed in 
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the model is acceptable. These indices make it possible to detect equality constraints that 
seem implausible and which we can shed to improve the model’s overall fit.  

The usefulness of these indices, which are obtained using the option “modindices = 
TRUE” in “summary”, is far from being negligible, above all when we wish to screen 
the problematic items to diagnose their effects and eventually provide solutions to them, 
especially in the context of cross-cultural validations of scales. However, the the 
goodness-of-fit indices should not exempt us from underpinning our decision to accept 
partial invariance conceptually. 

4.1.4. Specification of a partial invariance in lavaan syntax 

As an illustration, let us assume that we can justify (conceptually and empirically 
from the modification indices) removing the equality constraint imposed on an item, 
which we let us arbitrarily take item hop.p3. 

> weak <- cfa (model.SPE, data = BASE, group = "sex", 
group.equal = "loadings", group.partial = "pathways =~ 
hop.p3", estimator = "MLR") 

In the box below, a new indication has appeared: “group.partial”, indicating the 
presence of a partial invariance  in the model subject to estimation. This partial 
invariance concerns item hop.p3 (group.partial = "pathways =~ hop.p3"), whose 
loading on the “pathways” factor has dispensed with any equality constraint, that is 
it is permitted to differ from one group to another. 

> strong <- cfa (model.SPE, data = BASE, group = "sex", 
group.equal = c ("loadings","intercepts"), 
group.partial = c ("pathways =~ hop.p3", "hop.a6 ~1"), 
estimator = "MLR") 

In the specification above, all equality constraints across groups have been 
removed, to the loading of item hop.p.3 on the factor "pathways" ("pathways =  
~ hop.p3") as well as to the intercept of the item hop.a6 ("hop.a6..) 

4.2. Latent trait-state models 

Latent trait-state models are the name for a type of model designed with the intention 
of examining stable and non-stable aspects of a construct over time. Stable aspects refer 
to trait variance while non-stable aspects refer to state variance as well as error variance 
[ALL 36, CAT 47, EYS 83]. Although this debate has always been lively [STE 15], there 
is however a consensus [FRI 86] that psychological traits are considered as relatively 
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stable personal attributes, arising from an individual’s tendencies, propensities, or even 
styles and ways of being, feeling and thinking in a particular situation. 

Hertzog and Nesselroade [HER 87], not only highlight the fact that most 
psychological attributes are neither strictly traits nor strictly states, but they also draw 
attention to two widely shared false ideas on psychological traits and states. First, 
according to them, traits should not be used to mean unchangeable and genetically 
determined psychological attributes. Second, states are wrongly considered ephemeral 
and unpredictable and are unreliably evaluated (because of a confusion between 
stability and reliability). Kenny and Zautra [KEN 01] highlight the idea that all 
psychological constructs vary along a stability continuum called traitness. It remains to 
be seen what is part of the trait and what is part of the state when measuring a 
psychological construct. In other words, what does the score obtained from a measure 
capture: a psychological trait or rather a psychological state? We will pose this 
question again in another way: what part of the variance is imputable to the trait and 
what part is imputable to the state in a score obtained at any assessment occasion?  It is 
this question that latent trait-state models aim to answer. 

The reader will no doubt have understood that when we speak of stability, were are 
dealing with logitudinal data analyses. We must specify as much to begin with: these 
models require at least four repeat assessments of the same construct spread over time 
with the same participants (at least 3–4 waves of assessment). Here, we will not 
address attrition, which is an inherent limitation in longitudinal studies, for which 
recent statistical advances are making it possible to reduce biases a little in estimating 
the models’ parameters. In Graham [GRA 09] the reader will find a fairly accessible 
explanation of modern statistical models for handling missing data. 

This chapter suggests providing a general overview introducing two variants of 
latent trait-state models: (1) Kenny and Zautra’s model [KEN 95, KEN 01] first 
called “trait-state-error model”, then renamed Stable-Trait Autoregressive-Trait and 
State Model or STARTS; (2) Cole, Martin and Steiger’s model [COL 05], known by 
the name of  Trait-State-Occasion Model or TSO. 

We will explain how they are specified and identified using lavaan, and we will 
comment on their results using illustrations. 

4.2.1. The STARTS model 

This model can be divided into two versions: a univariate STARTS and a 
multivariate STARTS, which we will present in turn. 
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4.2.1.1. Univariate STARTS  

This model, of which Figure 4.1 provides a visualization in diagram form, is 
applied to a single observed measure of the construct (for example a scale’s total 
score) at least four times running with an interval (time lags) between assessment 
points, fixed by the researcher. 

This model makes the hypothesis that each time a assessment is made, the variable 
measured (y1, y2, y3, yj) can be a function of three independent latent variables:  a 
time-invariant latent factor, reflecting  a stable trait (ST), a time-varying factor, 
reflecting an autoregressive trait (ART), and finally a state factor (S), reflecting the 
specific measurement occasion (i.e., time-specific effects) as well as measurement error: 

yt = ST + ARTt + St, (t = 1, 2, 3,…, j) [4.1] 

It also makes the hypothesis of predictive relationships between latent ART 
factors, expressing an autoregressive function: 

ARTt = βt – 1 ARTt – 1 + ζt, (for t = 2, 3,…, j) [4.2] 

where ζt represents the residual of the autoregressive  effect. 

Let us recapitulate: this model suggests articulating three latent factors 
(symbolized in Figure 4.1 by three circles from which three arrows point to each 
observed variable) likely to capture score variance  on  repeated measure of 
construct: (1) a “stable trait ” factor (ST) capturing individual differences that are 
very durable over time, (2) “slow-changing traits” factors, called “autoregressive 
trait” (ART), capturing variance that demonstrates relatively gradual changes, 
ordered over time (a stability coefficient is provided from these factors), (3) finally, 
“state” (S) factors that capture variance unique and specific to each assessment 
occasion. These “state” factors reflect ephemeral, individual differences as well as 
measurement errors. 

The objective of the STARTS model is to evaluate the part of each of these 
factors in construct score variance to determine its real nature. It goes without saying 
that if the construct is designed as a state-like (for example, an anxiety state), the 
part of variance of its scores imputable to the state (S) factor should be very 
substantial. However, if the construct is designed as trait-like (for example, anxiety 
trait), the part of variance of its scores attributable to the stable trait (ST) and to 
autoregressive trait should in be very substantial; also, autoregressive trait should 
display a good consistency over time, generally resulting in fairly high stability 
coefficients (b in Figure 4.1). 
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Figure 4.1. Univariate STARTS model (the curved  
double arrows represent the variances) 

4.2.1.1.1. Identification of the STARTS model 

To guarantee the model’s mathematical identification, Kenny and Zautra [KEN 95] 
recommend fixing all the factor loadings at 1.00, constraining the autoregressive path 
coefficients to equality across time (b1 = b2..represented in Figure 4.1 by the same 
letter ("b"), constraining the ART factor residuals' variances (ζ) to equality across time 
(equality is represented by the same letter “z”, allocated to each residual variable ζ 
in figure 4.1), and constraining state (S) factor variances to equality across time 
(equality by the same letter “a” in figure 4.1). 

The simple autoregressive path reflects the fact that a variable’s value over time t is 
the sum of the values of its proportion in t – 1 and of a random residual (ζ). The equality 
between autoregressive paths makes it possible to guarantee stationarity, a condition 
sometimes necessary for analyzing the time series. A time series is called “stationary” (in 
a weak sense) if its statistical properties do not vary over time (expected value, variance, 
autocorrelation) [GRE 82]. However, the equality constraint between autoregressive 
paths is not always pertinent conceptually, and can therefore be lifted. It is usual to 
compare the two models, the one with the quality constraint with the one from which this 
constraint has been removed, and to retain the one that adjusts the data best. 

Thus, independent of the number of assessment occasions, there are only five 
parameters to estimate in a univariate STARTS: four variances (those of ST, ART1, S, ζ; 
represented in Figure 4.1 by the curved double arrows: that is “vt”, “z1”, “a” and “z”) 

    b                                   b                                   b                                  b                                   b 

z1  

z   

1   

ST 

ART1 

1                         1                      1                       1                     1                        1 

1

vt   

ART2 

1

y1 y2 

ζ2 

ART3

1

y3 

z   

1   
ζ3 

ART4

1

y4 

z   

1   
ζ4 

ART5

1

y5 

z   

1   
ζ5 

ART6 

1
S6 

a   

1   
y6 

z   

1   
ζ6 

S5 
a   

1   

S4 
a   

1   

S3 
a   

1   

S2 
a   

 1   

S1 
a   

 1   



176     Structural Equation Modeling with lavaan 

and a stationary regression coefficient (β) (b). However, [KEN 01] suggest some 
constraints, especially those affecting the ART factors residuals’ variances (ζ). 

It will also be noted that there are, apart from the residual variables (S and ζ), 
which are also exogenous, two latent exogenous variables (ST and ART1), all 
recognizable by the fact they have no arrow pointing towards them. It should be 
remembered that in structural equation modeling, all the exogenous variables have a 
variance to be estimated or modeled (fix, constraint). 

4.2.1.1.2. Specification of the STARTS model parameters in lavaan syntax 

The model represented by Figure 4.1 has an observed, measured variable for the 
same participants on six occasions (y1, y2, y3, y4, y5 and y6), thus serving as 
indicators for the stable trait (ST). Section #1 of the specification illustrates this. The 
factorial loading  of each of these variables has been fixed at 1.00, resulting in the 
hypothesis that a latent variable captures, in the same way, the variability present on 
each assessment occasion. In other words, the contribution of the “stable trait” factor 
is identical and constant from one assessment occasion to another. Thus, in lavaan 
syntax, a parameter fixed beforehand takes the value that precedes the asterisk 
placed in front of the parameter (for example 1*y1 = parameter fixed at 1.00, 5*y1 = 
parameter fixed at 0.50). Section #2 specifies the name given (vt*) to the variance of 
the latent variable  ST (see Figure 4.1). This name will serve further to calculate the 
part of this factor’s variance. Section #3 specifies the “autoregressive trait” factors 
linked to each assessment occasion. Loadings on each of these factors are also fixed 
at 1.00. Section #4 specifies the three autoregressive paths (regression coefficients, 
β) which are constrained to be equal over time  (ART1 → ART2 = ART2 → ART3 
= ART3 → ART4 = ART4 → ART5 = ART5 → ART6). Assigning a same letter 
(here “b”) with an asterisk in front of parameters means labeling these parameters 
and at the same time constraining them to equality. Section #5 commands the 
constraint to the equality of all the variances of the latent ART variables’ residuals 
(ζ), except ART1 which has no residual variable, (var(ζ2) = var(ζ3) = var(ζ4) = 
var(ζ5) = var(ζ6)). We recall here that ζ is considered an exogenous variable whose 
variance must be estimated. It is the same for TRAIT, ART1 and S which are also 
exogenous variables (there is no arrow pointing directly towards them). It will be 
noted here that for each of the variances of ζ, the variables of which they are the 
residual must be used. For example, the var(ζ2) is obtained by specifying an 
autocorrelation of the variable ART2 with itself (ART2 ~~ ART2), the var(ζ3) = 
ART3 ~~ ART3. To constrain these variances to equality across/over time, it is 
enough to assign them a single letter, followed by an asterisk (here z*). It will be 
noted that as an exogenous variable, ART1 has a variance that is left free to be 
estimated (z1). Section #6 specifies the equality constraint of latent “state” (S) 
variable variances. For example, the command line (y1 ~~ a*y1) specifies the 
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var(s1) as a free parameter to be estimated. The letter and the asterisk (a*) assigned 
to each variance name the parameter and announce its equality with those marked 
with the same letter (or name). Section #7 specifies the deletion of the correlation 
between the two latent exogenous variables ST and ART1, which, otherwise, will be 
correlated by default in lavaan. 

STEP 2. Specification of the STARTS model with six assessment occasions  
(Figure 4.1). 
 
model.SPE <- ' 
 
#1. Creating the latent “stable trait ” factor (loadings fixed at 1.00). 
 
ST =~ 1*y1 + 1*y2 + 1*y3 + 1*y4 + 1*y5 + 1*y6 
 
#2. Naming the “stable trait ” factor’s variance (vt) for variance decomposition. 
 
ST ~~ vt*ST 
 
#3. Creating the latent “autoregressive trait” factors (loadings fixed at 1.00). 
 
ART1 =~ 1*y1 
ART2 =~ 1*y2 
ART3 =~ 1*y3 
ART4 =~ 1*y4 
ART5 =~1*y5 
ART6 =~1*y6 
 
#4. Autoregressive paths constrained to equality (b*). 
 
ART2 ~ b*ART1 
ART3 ~ b*ART2 
ART4 ~ b*ART3 
ART5 ~ b*ART4 
ART6 ~ b*ART5 
 
#5. ζ variances constrained to equality (z*, except ART1, z1). 
 
ART1 ~~ z1*ART1 
ART2 ~~ z*ART2 
ART3 ~~ z*ART3 
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ART4 ~~ z*ART4 
ART5 ~~ z*ART5 
ART6 ~~ z*ART6 
 
#6. Latent “state” (S) variable variances constrained to equality (a*). 
 
y1 ~~ a*y1 
y2 ~~ a*y2 
y3 ~~ a*y3 
y4 ~~ a*y4 
y5 ~~ a*y5 
y6 ~~ a*y6 
 
#7. Removal the default correlation between the two exogenous variables (0*). 
 
ST ~~ 0*ART1 
 
#8. Constraints. 
 
z == z1 – (z1*b*b) 
a > 0.001 
z1 > 0.001 
vt > 0.001 
 
#9. Total variance decomposition of scores at “y”. 
 
var_total := vt + z1 + a 
var_trait := vt/var_total 
var_state := a/var_total 
var_art := z1/var_total' 

 
Section #8 specifies a constraint suggested by [KEN 01]. Although it is optional, 

this constraint affecting the residual variable variances (ζ) is included to ensure that 
the total variance of the “autoregressive trait” component (ART) is stable on all the 
assessment occasions. It is a stationarity constraint that may not only be necessary 
for identifying the model, but also convey the theoretical hypothesis that the 
distribution of the part of the variance imputable to this component remains constant 
and coherent over assessment occasions (i.e. stationarity assumption). It will be noted 
that “z1” is the name given to the variance of the latent variable  ART1, “z” that 
given to the residual variables ζ variances, and “b” reflects the autoregressive path 
coefficients. The last three commands of section #8 specify the (optional) constraints 



Advanced Topics: Principles and Applications     179 

whose objective is to prevent negative variances from appearing (i.e. forcing the 
variances to remain positive). 

Section #9 specifies the way of calculating the total variance of the scores 
obtained from the variable measured (“y”) and to estimate their component parts 
(“vt” = the name given to the variance of the latent variable  “stable trait ” (ST), “a” 
= the name given to the residual variables of the latent variables S; “var_trait” = 
variance of the latent trait factor (TS), “var_state” = variance of the latent state 
factor and of the measurement error (S), “var_art” = variance of the autoregressive 
trait factor. All these names (“vt”, “z”, “a”, “b” etc.) are arbitrarily chosen by the 
researcher. 

The simplicity of the univariate STARTS model however is marred by 
difficulties with convergence, which occur very often. This model is very useful 
where there is data at hand do not permit multivariate modeling. However, 
according to its designers [KEN 01] it needs several waves of assessment (10), a 
fairly large sample and additional constraints to remove the risk of improper 
solutions, to which it often falls victim. Not only are these additionnel constraints 
often complicated to specify, but they call above all for reservations and questions 
that are very much justified. 

4.2.1.1.3. Decomposition of the total variance in measured variable (Y)’s  scores 

Total variance in each observed measure in time t is function of three sources : (1) 
stable trait (ST), (2) autoregressive trait (ART), and (3) ephemeral time-specific state 
and measurement error (S). 

To estimate the part of each source in the total variance in the observed measure, 
it is enough to devide its specific variance estimate by total variance, which is the 
sum of the three variances (var(ST) + var (ART) + var (St)). Because of the equality 
constraints imposed on the model, such an operation is straightforward, even 
manually. We will demonstrate it using the following illustration. 

4.2.1.1.4. Illustration 

Specification of the STARTS model parameters 

The STARTS model has been applied to the scores obtained at one dimension of the 
depression scale, that is CES-D, obtained on six occasions over a period of 13 years with 
a large sample. The total score for the items in this dimension (i.e. Depressed Affect, 
DA) is the variable measured on six occasions, CSD0DA, CSD3DA, CSD5DA, 
CSD8DA, CSD10DA, CSD13DA, each serving as an indicator for three factors: stable 
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trait, autoregressive trait and state. The same constraints detailed previously have been 
applied to this model (see the box below). 

A “robust” estimator (MLR) has been kept here to estimate the STARTS model. 
The missing data have been handled using the Full Information Maximum 
Likelihood (FIML) method implemented in lavaan via the command (missing = 
"fiml") and which has, among others, the advantage of providing unbiased parameter 
estimates and standard errors (on this subject, see [END 11, GRA 09]). 

STEP 2.– Specifying the STARTS model (Figure 4.1) with six assessment  
occasions on one dimension of the CES-D scale. 
 
model.SPE <- ' 
 
#1. Latent “stable trait ” factor (loadings fixed at 1.00). 
 
TRAIT =~ 1*CSD0DA + 1*CSD3DA + 1*CSD5DA + 1*CSD8DA + 
1*CSD10DA + 1*CSD13DA 
 
#2. Name (vt*) the variance of the stable trait  for calculating the variance 
decomposition. 
 
TRAIT ~~ vt*TRAIT 
 
#3. Latent “autoregressive trait” factors (loadings fixed at 1.00). 
 
ART1 =~ 1*CSD0DA 
ART2 =~ 1*CSD3DA 
ART3 =~ 1*CSD5DA 
ART4 =~ 1*CSD8DA 
ART5 =~ 1*CSD10DA 
ART6 =~ 1*CSD13DA 
 
#4. Autoregressive paths constrained to equality (b*). 
 
ART2 ~ b*ART1 
ART3 ~ b*ART2 
ART4 ~ b*ART3 
ART5 ~ b*ART4 
ART6 ~ b*ART5 
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#5. ζ variances constraints to equality (z*, except ART1, z1). 

ART1 ~~ z1*ART1 
ART2 ~~ z*ART2 
ART3 ~~ z*ART3 
ART4 ~~ z*ART4 
ART5 ~~ z*ART5 
ART6 ~~ z*ART6 
 
#6. Variances “state” (S) factors constrained to equality(a*). 
 
CSD0DA ~~ a*CSD0DA 
CSD3DA ~~ a*CSD3DA 
CSD5DA ~~ a*CSD5DA 
CSD8DA ~~ a*CSD8DA 
CSD10DA ~~ a*CSD8DA 
CSD13DA ~~ a*CSD13DA 
 
#7. Remove the correlation by default between the two exogenous variables (*0). 
 
TRAIT ~~ 0*ART1 
 
#8. Constraints. 
 
 z == z1 – (z1*b*b) 
 
#9. Optional constraints to force the variances to be positive. 
 
a > 0.001 
z1 > 0.001 
vt > 0.001 
 
#10. Total variance decomposition in the measure scores. 
 
var_total:= vt + z1 + a 
var_trait:= vt/var_total 
var_state:= a/var_total 
var_art:= z1/var_total' 
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Evaluation of a univariate STARTS model solution 

STEP 3. Estimating the STARTS model. 
 
model.EST <- sem (model.SPE, data = BASE, missing = 
"fiml", estimator = "MLR") 
 
STEP 4. Obtaining the solution of the STARTS model. 
 
summary (model.EST, fit.measures = T, std = T) 

 
It will also be noted that for model estimation (Step 3) the “sem” model-fitting 

function has been sought. 

We recall first that the variances have been forced to be positive (see section #9 
of the model specification) with the aim of making the solution converge properly. It 
will be noted when examining Table 4.4 that the number of observations 
(participants) used (3694) was lower than the total of observations counted in our 
file (3777). The reason for this is as follows: lavaan automatically eliminates all the 
observations for which data are missing on all the variables used in the model. From 
this, it can be deduced that 83 participants had no score on all the variables in the 
model (CSD0DA, CSD3DA, CSD5DA, CSD8DA, CSD10DA, CSD13DA). 

Overall goodness-of-fit indices 

Evidently, the our sample size is not good news for χ², which has proven to be 
statistically significant. However, the other goodness-of-fit indices are clearly in 
favor of the univariate STARTS model: robust-CFI = 0.983, robust-TLI = 0.985 and 
robust-RMSEA = 0.022 (Table 4.4a). 

Local fit indices 

The section of the results that should draw our attention is the part showing 
“regressions” relating to autoregressive paths (Table 4.4b). The high path 
coefficients (0.796) indicate a high stability in time for the values of the variable 
measured. It will be noted that all the constraints imposed on the model lead to the 
total standardization of its coefficients (estimate = std.all), simplifying their 
interpretation by the same. 
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Table 4.4a. Overal goodness-of-fit indices of the univariate STARTS model 
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Table 4.4b. Autoregressive path estimates  

from the univariate STATRS (series) (contd.) 

Decomposition of the total variance of scores of the measured variable  

Two rubrics (redudant, it is true) in the results enable us to make this 
decomposition. The first, that displaying the “Variances” (Table 4.4c), enables 
manual calculation of the parts of the proportion of variance of each of the three 
components of the STARTS in the total variance in the construct scores (TRAIT, 
ART and S). The total variance = vt + z1 + ve, which is 4.491 + 4.467 + 4.850 = 
13.808. 

The proportion of variance in scores in our measure at time t imputable to stable 
trait factor (TRAIT) is equal to 4.491/13.808 = 0.325, thus accounting for a rounded 
33% of the total variance in this model. The proportion of variance imputable to 
autoregressive trait (z1) is equal to 4.467/13.808 = 0.324, which represent 32% of 
the total variance in this model. Remember that the autoregressive coefficients were 
high (0.796), indicating that even this variable part of depression leads to 
considerable stability in the short term. Finally, the proportion of variance imputable 
to the ephemeral state and to random error (ve) is equal to 4.850/13.808 = 0.351, which 
represent  35% of the total variance in this model. Finally, it will be noted that the 
TRAIT factor variance is slightly outside a 5% statistical significance bound (p = 0.056). 

 

Table 4.4c. Univariate STARTS variances (series) (contd.) 
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The second rubric “Defined parameters” (Table 4.4d), obtained using the 
variance decomposition specification (section #10), automates the previous manual 
calculations. 

 

Table 4.4d. Variance decomposition of the univariate STARTS (series) (contd.) 

Reading Table 4.4d, it will be noted that the stable trait variance (var_trait) is 
significant is marginally significant at p = 0.056. This perhaps conveys the difficulties 
encountered by this model to lead to a “forceps” convergence after 386 iterations. 

In total, the results of the STARTS model applied to data measuring a sub-dimension 
of depression over a period of 13 years show that two-thirds of the variance in scores 
obtained at this measure can be attributed to the trait, and a third is imputable to the state 
and to measurement error. Scores in this measure capture more depression-trait than 
depression-state. 

As a conclusion, it seems clear to us that univariate STARTS is a heuristic model, 
conceptually imaginative, but empirically problematic. In fact, our sample size, the 
estimation of the model failed when using only four or five measurement times. In 
addition, the introduction of some constraints recommended by [KEN 01] prevented the 
models’ convergence. Does this have something to do with its univariate nature based on 
only one observed error-free measure at each measurement occasion? This is what we 
propose to find out next by exploring its multivariate version. 

4.2.1.2. Multivariate STARTS  

By “multivariate”, we should understand here the use of repeated measures of a 
construct that has multiple indicators (i.e. repeated measurement models). In other 
words, in place of modeling the total score on a measure, we model all the items 
either individually or in parcels, which can be subscores on construct's different 
dimensions. Figure 4.2 offers a diagram illustration of the multivariate STARTS. If 
we examine Figure 4.1 representing the univariate STARTS carefully, and compare 
it to Figure 4.2, it will be noted that the only difference between them lies in the 
substitution of manifest variables (y1, y2, y3, y4, y5, y6) by latent variables (DEP1, 
DEP2, DEP3, DEP4, DEP5, DEP6) each reflected by three indicators/items (the  
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number of indicators depends on the measure used and the researcher’s choices to 
aggregate or the items of this measure). These factors represent the construct on 
different occasions specific to the moment when the assessment is made. Each time, 
the same measurement model (i.e. CFA) underlyning the construct is present. It is 
therefore an extension of the univariate STARTS that, by integrating measurement 
models, offers the advantage of considering the reliability of scores in the observed 
measure of the construct [DON 12].  

The variance decomposition of the latent variables representing the construct on 
each assessment occasion is the multivariate STARTS’ main objective. The model 
makes the hypothesis that at each assessment point, the score variance depends on  
three concomitant factors (Figure 4.2): (1) a stable and enduring trait (TRAIT), (2) 
autoregressive trait (ART) whose change is slow, and (3) “STATE” factor. Given 
that measurement errors are considered in the measurement model, the “STATE” 
factor reflects the systematic variance of scores which is not imputable to the stable 
trait or to the autoregressive trait. The “STATE” variance thus becomes a real 
variance, specific to each assessment occasion and with measurement errors 
removed. Clearing the “STATE” factor of measurement errors is the main advantage 
of multivariate STARTS compared to univariate STARTS. As shown in Figure 4.2, 
the measurement errors linked to each indicator are correlated with one another over 
time to consider the unique shared variance over time. The measurement error 
variance contains both the measurement error variance and the variance unique 
(specific) to the indicator, which is not common to the latent variable’s other 
indicators. It is this specific variance that we seek to control via autocorrelations of 
the same indicator’s measurement errors over time. If this autocorrelation, which is 
due to factors other than the latent factor (the construct) on which the indicator 
depends, is not considered in the model, estimation of the construct’s stability will 
be biased. 

The variance decomposition of the latent variables representing the construct 
(DEP) on each assessment occasion invites us to pay particular attention to 
parameters in a multivariate STARTS model: (1) stable “TRAIT”  variance (“vt” in 
the diagram in Figure 4.2) which indicates the proportion of variance of the scores 
repeated in the construct imputable to the stable and durable  trait; (2) autoregressive 
trait factor variance (ART) which expresses these same scores’ proportion of 
variance, which can be attributed to relatively stable and slowly changing  factors; 
(3) “STATE” factor variance which conveys the proportion of variance of scores 
imputable to the specific occasion at the moment the assessment is taken; and finally 
(4) the autoregressive coefficients (beta) that express the temporal stability of 
autoregressive trait. 
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Figure 4.2. Multivariate STARTS (the doubles curved arrows represent the variances 
and covariances). For clarity in the diagram, only the covariances between the 
measurement errors of the first indicator (DA) of the latent variables (DEP) have been 
drawn 
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4.2.1.2.1. Decomposition of the total variance of the latent variable “occasion” 

To estimate the proportion of each of the three initial parameters in the latent 
variable’s total variance on each occasion, it is sufficient to divide its non-standardized 
value by the total variance which is the sum of three variances (Vt + VART + Vstate). 
Thus, the variance of the stable trait  is obtained as follows: Vt = Vt/(Vt + VART + 
Vstate). 

4.2.1.2.2. Identifying a multivariate STARTS  

Identifying the multivariate STARTS requires several constraints to be imposed: 
(1) all STARTS’ factors are independent of one another (orthogonal); (2) the trait 
(TRAIT) factor loadings are all fixed at 1.00; (3) the autoregressive trait factor (ART) 
loadings are fixed at 1.00; (4) the “STATE” factor loadings are fixed at 1.00; (5) the 
autoregressive trait factor variances(ζ) are constrained to equality in time; (6) the 
“state” factor variances are obliged to equality from one occasion;  
(7) the autoregressive (bêta) coefficients are constrained to equivalence through time; 
(8) other constraints (i.e. to be fixed initially) can impact the autoregressive trait factor 
variance. We will discuss this later. 

In addition, at least one weak invariance must be imposed on the latent variable’s 
indicators across the evaluation occasions (i.e. the loading of item 2 in t1 = loading of 
item 2 in t2 = loading of item 2 in t3 = loading of item 2 in t4, etc.). Such an 
invariance, which means that the measure classes participants in the same way on each 
assessment occasion, is a minimum prerequisite for any longitudinal analysis. In fact, 
the absence of even a weak invariance means that the relationship between the 
indicator and the latent variable on which it depends changes with time, suggesting 
that this indicator potentially measures a construct that differs at each assessment. 
Finally, it is also advisable to autocorrelate the same indicator’s measurement errors 
through time to take account of the shared method variance (for example, the 
measurement error of item 1 in t1 correlated with the measurement error of item 1 in 
t2, with item 1 in t3, etc.). 

4.2.1.2.3. Illustration 

Here, we return to the data that served to illustrate the univariate STARTS model 
that we convert here into a multivariate STARTS. We will use the total scores at 
each of the CES-D scale dimensions as indicators of the latent variable depression 
(DEP) on six assessment occasions (Figure 4.2). For example, depression in t1 
(DEP1) has as indicators (measured variables), scores for the “Depressed Affect, 
DA” dimension (0DA), scores for the “Positive Affect, PA” (0PA) dimension and 
scores for the “Somatic Complaints, SC” (0SC) dimension for the CES-D scale. 
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Specifying parameters for the multivariate STARTS model in lavaan syntax 

For didactic reasons, we have also chosen here to partition the specification of 
our multivariate STARTS into numbered sections, the number of one section is 
joined to a hash sign (#1, #2, #3 etc.). Presented in the box below, we will review 
them each in turn. 

STEP 2. Specifying the multivariate STARTS model with six time measurements of 
the CES-D scale (Figure 4.2). 
 
model.SPE <- ' 
 
#1. Models for Measurement models of depression at each time with weak 
invariance (i.e. factor laodings’ equality, as indicated in Figure 4.2). 
 
DEP1 =~ 1*CSD0DA + a*CSD0PA + b*CSD0SC 
DEP2 =~ 1*CSD3DA + a*CSD3PA + b*CSD3SC 
DEP3 =~ 1*CSD5DA + a*CSD5PA + b*CSD5SC 
DEP4 =~ 1*CSD8DA + a*CSD8PA + b*CSD8SC 
DEP5 =~ 1*CSD10DA + a*CSD10PA + b*CSD10SC 
DEP6 =~ 1*CSD13DA + a*CSD13PA + b*CSD13SC 
 
#2. Factor “stable trait” (loadings fixed at 1.00). 
 
TRAIT =~ 1*DEP1 + 1*DEP2 + 1*DEP3 + 1*DEP4 + 1* DEP5 + 
1*DEP6 
 
#3. Name the trait factor variance (“vt” for example) for the variance 
decomposition. 
 
TRAIT ~~ vt*TRAIT 
 
#4. Autoregressive trait factors (loadings fixed at 1.00). 
 
ART1 =~ 1*DEP1 
ART2 =~ 1*DEP2 
ART3 =~ 1*DEP3 
ART4 =~ 1*DEP4 
ART5 =~ 1*DEP5 
ART6 =~ 1*DEP6 
 
#5. “State” factors (loadings fixed at 1.00). 



190     Structural Equation Modeling with lavaan 

STATE1 =~ 1*DEP1 
STATE2 =~ 1*DEP2 
STATE3 =~ 1*DEP3 
STATE4 =~ 1*DEP4 
STATE5 =~ 1*DEP5 
STATE6 =~ 1*DEP6 
 
#6. Autoregressive paths (arbitrarily called “beta” here) constrained to equality (via 
beta*). 
 
ART2 ~ beta*ART1 
ART3 ~ beta*ART2 
ART4 ~ beta*ART3 
ART5 ~ beta*ART4 
ART6 ~ beta*ART5 
 
#7. The latent DEP variable variances fixed at zero (as each is provided with a 
residual/distrubance variable by default). 
 
DEP1 ~~ 0*DEP1 
DEP2 ~~ 0*DEP2 
DEP3 ~~ 0*DEP3 
DEP4 ~~ 0*DEP4 
DEP5 ~~ 0*DEP5 
DEP6 ~~ 0*DEP6 
 
#8. Latent “STATE” variable variances constrained to equality. 
 
STATE1 ~~ vs*STATE1 
STATE2 ~~ vs*STATE2 
STATE3 ~~ vs*STATE3 
STATE4 ~~ vs*STATE4 
STATE5 ~~ vs*STATE5 
STATE6 ~~ vs*STATE6 
 
#9. Latent “ART” variable variances constrained to equality (except those of 
ART1). 
 
ART1 ~~ v*ART1 
ART2 ~~ vv*ART2 
ART3 ~~ vv*ART3 
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ART4 ~~ vv*ART4 
ART5 ~~ vv*ART5 
ART6 ~~ vv*ART6 
 
#10. Remove the correlations by default between the model’s exogenous variables 
(*0). 

TRAIT ~~ 0*ART1 
TRAIT ~~ 0*STATE1 
TRAIT ~~ 0*STATE2 
TRAIT ~~ 0*STATE3 
TRAIT ~~ 0*STATE4 
TRAIT ~~ 0*STATE5 
TRAIT ~~ 0*STATE6 
ART1 ~~ 0*STATE1 
ART1 ~~ 0*STATE2 
ART1 ~~ 0*STATE3 
ART1 ~~ 0*STATE4 
ART1 ~~ 0*STATE5 
ART1 ~~ 0*STATE6 
STATE1 ~~ 0*STATE2 
STATE1 ~~ 0*STATE3 
STATE1 ~~ 0*STATE4 
STATE1 ~~ 0*STATE5 
STATE1 ~~ 0*STATE6 
STATE2 ~~ 0*STATE3 
STATE2 ~~ 0*STATE4 
STATE2 ~~ 0*STATE5 
STATE2 ~~ 0*STATE6 
STATE3 ~~ 0*STATE4 
STATE3 ~~ 0*STATE5 
STATE3 ~~ 0*STATE6 
STATE4 ~~ 0*STATE5 
STATE4 ~~ 0*STATE6 
STATE5 ~~ 0*STATE6 
#11. Autocorrelations of measurement errors over time (45 correlations). 

CSD0DA ~~ CSD3DA + CSD5DA + CSD8DA + CSD10DA + CSD13DA 
CSD3DA ~~ CSD5DA + CSD8DA + CSD10DA + CSD13DA 
CSD5DA ~~ CSD8DA + CSD10DA + CSD13DA 
CSD8DA ~~ CSD10DA + CSD13DA 
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CSD10DA ~~ CSD13DA 
CSD0PA ~~ CSD3PA + CSD5PA + CSD8PA + CSD10PA + CSD13PA 
CSD3PA ~~ CSD5PA + CSD8PA + CSD10PA + CSD13PA 
CSD5PA ~~ CSD8PA + CSD10PA + CSD13PA 
CSD8PA ~~ CSD10PA + CSD13PA 
CSD10PA ~~ CSD13PA 
CSD0SC ~~ CSD3SC + CSD5SC + CSD8SC + CSD10SC + CSD13SC 
CSD3SC ~~ CSD5SC + CSD8SC + CSD10SC + CSD13SC 
CSD5SC ~~ CSD8SC + CSD10SC + CSD13SC 
CSD8SC ~~ CSD10SC + CSD13SC 
CSD10SC ~~ CSD13SC 
 
#12. Constraints. 
 
vv == v – (v*beta*beta) 
vt > 0.001 
vs > 0.001 
vv > 0.001 
 
#13. Decomposition of the total variance of the latent variable DEP. 
 
var_total:= vt + vs + v 
var_trait:= vt/var_total 
var_state:= vs/var_total 
var_ART := v/var_total' 

 
The first section #1 specifies the six measurement occasions of the depression 

scale (DEP1… DEP6). On each occasion, depression has been measured by the 
same three indicators. A weak temporal invariance has been imposed on two 
indicators, since the first has been fixed at 1.00 to identify the model. For example, 
factor loading of CSD0PA = factor loading of CSD3PA = the loading of CSD5PA = 
the loading of CSD8PA = factor loading of CSD10PA = the loading CSD13PA on 
their respective latent variables. The letter “a*” allocated to each of the loadings 
indicates this equality constraint. 

Section #2 introduces the latent “stable trait” factor, called “TRAIT” here. It 
weighs equally on each of the six latent DEP variables (loadings fixed at 1.00). 

Section #3 serves to name the TRAIT factor variance. The name given to this 
factor (vt*) will be used to partition  the total variance of the latent variable DEP. 
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Section #4 specifies the “autoregressive trait” (called “ART” here) factors. On 
each assessment occasion, the construct depression (DEP) undergoes the effect of an 
“autoregressive trait” factor (ART) whose loading is fixed at 1.00. 

Section #5 specifies the latent “state” variables (called “STATE”). Each latent 
DEP variable undergoes the effect of a latent STATE variable whose loading is fixed 
at 1.00. 

Section #6 specifies the autoregressive paths that are constrained to equality over 
time (the repeated presence of “beta*” indicates this equality constraint. 

Section #7 fixes the variance of each of the latent DEP variables at zero.  
There are many reasons for this. First, as endogenous variables, lavaan will 
automatically and by default assign to each one a residual/disturbance variable. 
However, this has been replaced by our latent “STATE” variable  (section #5). Thus, 
to avoid duplication, it is vital to require lavaan not to introduce residual variables 
assigned to latent endogenous DEP variables into the model by default. For 
example, “DEP1 ~~ 0*DEP1” indicates cancellation of the disturbance variable 
logically linked to the latent DEP1 variable. 

Section #8 specifies the equality constraint on the variances of all the latent 
“STATE” variables. The sign “vs*”, which they share, conveys this equality 
requirement. 

Section #9 specifies the equality between the latent ART variable variance. In 
reality, apart from ART1 whose variance is free, the other latent ART variables 
(ART2… ART6) do not strictly speaking have variance, as they are exogenous. Thus, it 
is a question of constraining the equality rather on the variances of their respective 
disturbance variables (ζ). The letter they share, “vv*”, expresses this equality constraint. 

Section #10 is important, as it specifies the cancelation of correlations between 
the model’s exogenous variables, correlations programmed by default in lavaan. Our 
model contains three latent exogenous variables, which can be recognized as there is 
no arrow pointing towards them (Figure 4.2): the TRAIT variable, the ART1 
variable and the STATE variables that have ceased to be residuals of the DEP 
variables to become true latent variables specified in our syntax (section #5). And as 
figures 4.1 and 4.2 show, the STARTS model assumes independence across the latent 
exogenous variables, hence the need to delete their intercorrelations: correlation 
between TRAIT and ART1, correlations between TRAIT and STATE1… STATE6, 
correlations between ART1 and STATE1… STATE6, and finally intercorrelations 
between the STATE variables. 
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Section #11 specifies the measurement error autocorrelations for each indicator over 
time. Precisely, there are 15 autocorrelations for each indicator measured six times (6*(6 – 
1)/2 = 15). For instance, the measurement error of the CSD0DA indicator is correlated 
with each measurement error of this indicator measured on the following occasions: 
CSD3DA, CSD5DA, CSD8DA… CSD13DA, see Figure 4.2). It has already been seen 
that the measurement error encloses a sort of combination of random measurement error 
and specific indicator/item variance.  And because this specific indicator variance is 
assumed to be enduring (not random), it could be appropriate to autocorrelate it over time. 
Since it is not random, but rather systematic, this measurement error may occur again at 
each measurement occasion. Such an error could reflect method effect. However, these 
autocorrelations are sometimes neither necessary nor justified. 

Section #12 specifies constraints that are similar to those specified for the 
univariate STARTS. 

Section #13 shows the way to calculate and partition the total variance  of 
repeated measures. The total variance concerns the latent DEP variables, unlike the 
univariate STARTS for which the calculation of the total variance concerns the 
observed variable “y”. 

Model evaluation 

STEP 3. Estimation of the multivariate STARTS model. 
model.EST <- sem (model.SPE, data = BASE, missing = 
"fiml", estimator = "MLR") 

STEP 4. Retrieving the results of the multivariate STARTS model. 

summary (model.EST, fit.measures = T, std = T) 
 
A “robust” estimator (MLR) has been chosen to estimate the multivariate 

STARTS model. The missing data have been handled using the Full Information 
Maximum Likelihood (FIML). 

Overall goodness-of-fit indices  

Despite a statistically significant χ² (equal to 19542 with 102 degrees of 
freedom), the values of the other fit indices (TLI, CFI, RMSEA) indicate that the 
model is in harmony with the data (Table 4.5). This observation enables us to 
examine the local fit indices. 
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Table 4.5a. Overall goodness-of-fit indices from the multivariate STARTS 
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Local fit indices and variance decomposion 

It can be seen from the results of the “Regressions” rubric (Table 4.5b) that the 
standardised coefficients of the autoregressive paths (0.711) indicate high stability 
over time of the latent variable DEP scores. 

 
Table 4.5b. Autoregessive path estimates of the multivariate STARTS  (contd.) 

As for the scores’ total variance decomposition, the results of the “Defined 
Parameters” rubric (Table 4.5c) we learn that the proportion of the “stable trait” 
factor is the highest (0.473 which is 47%). That of the autoregressive trait is 29%, 
whereas the proportion of the “state” factor represents 24% (0.239). All these parts 
of total variance are statistically significant to p = 0.000. 

 
Table 4.5c. Multivariate STARTS variance decomposition (contd.) 

To conclude, we will say here that three quarters (76%) of the score variance for 
our depression indicators are imputable to the stable trait and to autoregressive trait 
(slow-changing component). Thus, the scores in this measure seem to capture 
depresion-trait than depression-state. 



Advanced Topics: Principles and Applications     197 

4.2.2. The Trait-State-Occasion Model 

Suggested by Cole, Martin and Steiger [COL 05], the Trait-State-Occasion 
(TSO) model is intended to be a multivariate extension of the univariate STARTS. 
This extension suggested by these authors in 2005, well before that of the 
multivariate STARTS suggested by Donnellan and his colleagues [DON 12]. 
Figure 4.3 offers a visualization in diagram form of the TSO. It looks exactly like 
the multivariate STARTS. However, it is nothing of the sort. We will detail the 
TSO’s constituent parts first, and then reveal its dissimilarities from the STARTS. 

Each time assessment is taken (t), the TSO requires multiple indicators/items (at 
least two) to represent the construct to be studied across time. Each time assessment  
is taken, these same indicators serve to evaluate the state (“S_DEP” in Figure 4.3) in 
which the participant is on the construct measured. The latent variable (“S_DEP”) 
therefore represents assessment of the construct at moment t. Thus, each indicator is 
subject to the effect of this latent variable underlying the construct and to the effect of 
measurement error, Yit = Sit + δit (i.e. a CFA). This latent variable (“S_DEP”) is, itself, 
affected at time t, by two influences: that of a trait (“T_DEP”) factor supposed to be 
time-invariant factor, and that of time-varying factor, as it reflects the specific moment 
when the construct is measured (i.e a second-order CFA). This last factor, called 
“occasion” (“occas” in Figure 4.3), represents the specific circumstances at the 
moment the assessment is made and which affect its scores. Both these effects are 
reflected in the two arrows pointing to S_DEP (thus, S_DEP = T_DEP + occas). It will 
be noted here that the (“occas”) factors are no other than the residual variables 
necessarily linked to the first order variables in a hierarchical model (Figure 4.3). In 
fact, each endogenous variable (which has at least one arrow directed towards it) is 
necessarily provided with a residual variable (measurement error, residual error, 
disturbance). For example, ζ2, ζ3, ζ4, ζ5, ζ6 in Figure 4.3 represent the residual variables 
of occas2, occas3, occas4, occas5, occas6 respectively. The occast variables are related to 
one another by an autoregressive process through the effect of the first occasion on the 
subsequent one (occast → occast + 1). The autoregressive coefficients (β) can thus 
express the persistence in over time of the effects of specific circumstances related to 
the construct assessment context. 

Thus, the TSO’s constituent components make it possible to describe the 
construct’s true nature (quasi-trait or quasi-state), to specify at what point the 
occasion-related circumstances are persistent over time, according to B in the 
autoregressive function, and to determine the unexplained proportion of variance, 
accounting for the two previous components (i.e., Trait and Occasion). 
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Figure 4.3. Trait-state-occasion-TSO model (occas = occasion factor, S_DEP = state 
factor) (the curved double arrows represent the variances and covariances). For 
clarity on the diagram, only the covariances between the measurement errors of the 
first indicator (DA) of the latent variables (S-DEP) have been drawn 
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The only difference between the TSO and the multivariate STARTS lies in the 
disappearance in the TSO of the latent “state” variable  available in STARTS. The latent 
variable “occasion” in STARTS becomes the latent variable “state” in TSO. This is 
therefore without disturbance variable (without residual). The “occasions” variables are 
in a way phantom variables and not residual variables as such. The proof is that from 
occas2, each is allocated a residual variable (ζ). 

4.2.2.1. Decomposition of the latent variable’s total variance “state” 

It has already been pointed out that the construct measured each time t (“S-DEP” 
in Figure 4.3) is subject to two influences (represented by the two arrows in the 
diagram): the influence of the T_DEP trait, which is time-invariant factor, and the 
influence of occasion-related circumstances (occast), a time-varying factor. And 
because there is no disturbance term associated to S_DEPt, both these effects share 
the total variance of scores (S_DEPt) obtained at time t; the total variance  
(Var(TT)) = Var(T) + Var(Ot). The percentage of variance imputable to the stable 
trait = Var(T)/Var(TT), the remainder being the proportion of variance of the scores 
obtained at a moment t not explained by the trait, but imputable to the context 
(occasion) of assessment. However, it makes sense to specify that only the 
“stable trait” and the first “occasion” factor (occas1) variance are estimated 
(recognizable in the figures by their curved double arrows) and allocated the p-
values, as they are exogenous (independent) variables. As endogenous variables, the 
following “occasion” factors (occas2, occas3… occast + 1) have no variance, but the 
residual variables (ζ) which are allocated the variance (the curved double arrows 
provide a visual illustration of it). The variances of “occasion” factors subsequent to 
the first factor (occas1) depend on two sources of influence: the autoregressive effect 
(β) of the previous “occasion” factor (occas1 → occas2) and the effect of the residual 
variable (ζ) linked to each endogenous “occasion” factor. The variances of occas2, 
occas3… occas6 are not estimated automatically by SEM software programs, 
including lavaan. We will illustrate this statement further. 

4.2.2.2. Identification of the TSO 

Cole and his colleagues [COL 05] make the following recommendations and 
suppositions to eventually simplify the model and facilitate its convergence: (1) all 
the TSO’s exogenous factors are independent of one another (orthogonal); (2) the 
factor loadings of the trait factor (T_DEP) are all fixed at 1.00; (3) the loadings of the 
“occasions” factors are fixed at 1.00; (4) the autoregressive coefficients (β) linking 
the “occasion” factors are constrained to equality across time  (homogeneity of 
autoregressive effects);  (5) the residual variable variance (ζ) of the “occasion” 
factors are constrained to equality across time (homogeneity of variances). 
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In addition, it is recommended to impose at least a weak measurement invariance 
across time (i.e. the loading of item 2 in t1 = loading of item 2 in t2 = loading of 
item 2 in t3 = loading of item 2 in t4). Such an invariance, which means that the on 
each assessment occasion, is  a classes the participants in the same way at each 
assessment occasion, is taken, is a minimum prerequisite for any longitudinal 
analysis. Finally, it is also recommended to autocorrelate the measurement errors of 
the same indicator over time to account for the method’s shared variance (for 
example, the measurement error of item 1 in t1 correlated with the measurement of 
error item 1 in t2, with item  1 in t3, etc.) Failure to control this method effect results 
in an an overestimation of temporal stability, which then runs the risk of generating 
overevaluated and biased estimations on trait factor variance and the stability of the 
“occasion” factors. 

Because they are not actually necessary but merely recommended, some constraints, 
which aim to simplify the model and facilitate its convergence, can be relaxed when they 
prove to have no conceptual base. For example, it is sometimes conceptually more 
plausible not to assume the autoregressive effects (β) are homogenous (equal) or to 
assume that the residual variances are not constant over time. Also, it is permissible to 
suppose that the “stable trait” factor does not occur identically over time, and to remove 
the equality constraint that weighs on the loadings (all fixed at 1.00). The approach to 
adopt here consists of comparing models (those with constraints versus those without) 
and ensuring that the constraints do not worsen model fit quality. We can even compare 
the TSO with a second-order CFA model (i.e. remove the “occasion” factors and restore 
the residual variables of the first order latent variables). 

4.2.2.3. Illustration of a TSO 

We will apply the TSO to the data used to illustrate the previous STARTS 
models. Each of the six latent variables (S_DEP) in our 6-wave time series has three 
indicators measuring the depressive state at time t (DA, PA and SC, reflecting the 
scores for each of the three CES-D dimensions). A measurement error is associated 
to each indicator (e). We will now see how to convert the elements making up the 
diagram on Figure 4.3 in lavaan syntax. 

4.2.2.3.1. Specification of TSO  parameters in lavaan syntax 

The specification of the TSO illustrated by the diagram on Figure 4.3 is broken 
down into eight sections. 

STEP 2. Specification of the TSO model with six assessment occasions of the CES-
D scale is measured (Figure 4.3). 
 
model.SPE <- ' 
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#1. Latent “state-depression: S_DEP” variables. 

S_DEP1 =~ 1*CSD0DA + a*CSD0PA + b*CSD0SC 
S_DEP2 =~ 1*CSD3DA + a*CSD3PA + b*CSD3SC 
S_DEP3 =~ 1*CSD5DA + a*CSD5PA + b*CSD5SC 
S_DEP4 =~ 1*CSD8DA + a*CSD8PA + b*CSD8SC 
S_DEP5 =~ 1*CSD10DA + a*CSD10PA + b*CSD10SC 
S_DEP6 =~ 1*CSD13DA + a*CSD13PA + b*CSD13SC 
 
#2. “trait-depression: T_DEP” factor (loadings fixed at 1.00). 

T_DEP =~ 1*S_DEP1 + 1*S_DEP2 + 1*S_DEP3 + 1*S_DEP4 + 
1*S_DEP5 + 1*S_DEP6 
 
#3. removal of residual variables associated automatically to latent variables 
(S_DEP). 

S_DEP1 ~~ 0*S_DEP1 
S_DEP2 ~~ 0*S_DEP2 
S_DEP3 ~~ 0*S_DEP3 
S_DEP4 ~~ 0*S_DEP4 
S_DEP5 ~~ 0*S_DEP5 
S_DEP6 ~~ 0*S_DEP6 
 
#4. Creation of latent “occasion: occas” variables. 

occas1 =~ 1*S_DEP1 
occas2 =~ 1*S_DEP2 
occas3 =~ 1*S_DEP3 
occas4 =~ 1*S_DEP4 
occas5 =~ 1*S_DEP5 
occas6 =~ 1*S_DEP6 
 
#5. The autoregressive paths/effects of an “occasion” on the following occasion. 

occas2 ~ bêta*occas1 
occas3 ~ bêta*occas2 
occas4 ~ bêta*occas3 
occas5 ~ bêta*occas4 
occas6 ~ bêta*occas5 

#6. Removal the default correlations between the models’ latent exogenous 
variables (*0). 
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T_DEP ~~ 0*occas1 
 
#7. Constrain the residual variable variance to equality (ζ; the first, is not residual, 
figure 4.3). 
 
occas1 ~~ occas1 
occas2 ~~ zeta*occas2 
occas3 ~~ zeta*occas3 
occas4 ~~ zeta*occas4 
occas5 ~~ zeta*occas5 
occas6 ~~ zeta*occas6 
 
#8. Measurement error autocorrelations (45 correlations). 
 
CSD0DA ~~ CSD3DA + CSD5DA + CSD8DA + CSD10DA +  
CSD13DA 
CSD3DA ~~ CSD5DA + CSD8DA + CSD10DA + CSD13DA 
CSD5DA ~~ CSD8DA + CSD10DA + CSD13DA 
CSD8DA ~~ CSD10DA + CSD13DA 
CSD10DA ~~ CSD13DA 
CSD0PA ~~ CSD3PA + CSD5PA + CSD8PA + CSD10PA +  
CSD13PA 
CSD3PA ~~ CSD5PA + CSD8PA + CSD10PA + CSD13PA 
CSD5PA ~~ CSD8PA + CSD10PA + CSD13PA 
CSD8PA ~~ CSD10PA + CSD13PA 
CSD10PA ~~ CSD13PA 
CSD0SC ~~ CSD3SC + CSD5SC + CSD8SC + CSD10SC +  
CSD13SC 
CSD3SC ~~ CSD5SC + CSD8SC + CSD10SC + CSD13SC 
CSD5SC ~~ CSD8SC + CSD10SC + CSD13SC 
CSD8SC ~~ CSD10SC + CSD13SC 
CSD10SC ~~ CSD13SC' 

 
The first section #1 specifies the six latent variables (STATE) defined by the 

same indicators at each assessment occasion. A weak temporal invariance   
has been imposed on two indicators, as the first was fixed at 1.00 to identify  
the measurement model. These factors assess  the level of the participant’s 
depressive state at time t. Thus, “Var(S_DEP1)” represents the variance of 
depression scores in t1. 
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Section #2 specifies the single stable factor, depression-trait, called “T_DEP”, 
which explains identically (i.e. so that the loadings are fixed at 1.00), each 
depression-state factor (S_DEP). 

Section #3 specifies the deletion of residual variables associated automatically 
by lavaan to the endogenous variables. In effect, as soon as each of the latent 
variables S_DEP1 to S_DEP6 undergoes trait factor (T_DEP) effect, they become 
endogenous variables and consequently are automatically allocated the residual 
variables. 

Section #4 specifies creation on the remains of previously erased residual variables 
and, to avoid duplication, the creation of six latent “occasion” variables defining one 
corresponding latent variable  S_DEP (occas1 → S_DEP1… occas6 → S_DEP6) at 
assessment point. The “occasion” factor represents the proportion of variance in 
depression not explained by the “stable trait”  (T_DEP) factor in time t. 

Section #5 reveals the syntax of the autoregressive effects that are constrained to 
equality across time  (homogeneity of autoregressive effects). 

Section #6 specifies orthogonality across the TSO’s latent exogenous variables. 
There are two: T_DEP and occas1 for which we must remove the correlation, which 
is considered in the model by default. The other “occas” variables have become 
endogenous because of the autoregressive process. 

Section #7 specifies the equality constraints on the residual variables (ζt) of the 
variance of the latent endogenous occasion variables (homogeneity of variances). Recall 
here that “occas1 ~~ occas1” specifies the latent  occas1 variable variance which, as an 
exogenous variable, does not have a residual variable. While for example, “occas2 ~~ 
zeta*occas2” specifies the variance of the residual variable (ζ2) of the variable occas2 
which, as a latent endogenous variable  has no variance to estimate. The autoregressive 
process has rendered variables occas2 to occas6 endogenous and so each does have a 
residual variable (ζ). These residual variables are automatically considered by lavaan, 
hence their absence from the model specification (and their presence in the diagram). 

Section #8 specifies the measurement error autocorrelations for each repeated 
measure, as it precisely 15 autocorrelations for each indicator measured six times  
(6*(6 – 1)/2 = 15) (i.e. the  CSD0DA indicator measurement error is correlated with the 
same indicator assessed on the assessment occasions: CSD3DA, CSD5DA, CSD8DA… 
CSD13DA; see Figure 4.3). 
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4.2.2.3.2. Model evaluation 

STEP 3. Model estimation TSO. 
 
model.EST <- sem (model.SPE, data = BASE, missing = 
"fiml", estimator = "MLR") 

STEP 4. Retrieving the results of the TSO. 
 
summary (model.EST, fit.measures = T, std = T,  
rsq = T) 

A “robust” estimator (MLR) has been used to estimate the TSOmodel, and the 
missing data have been processed using the Full Information Maximum Likelihood 
(FIML) method. 

Overall Goodness-of-fit indices  

Notwithstanding a significant χ², as one might expect, the TSO fits the data very 
well, as the values of the robust goodness-of-fit indices bear witness: robust-CFI = 
0.994, robust-TLI = 0.990, robust-RMSEA = 0.018. 

Local fit indices   

When we examine the parameters’ estimates, they reveal no offending and 
inadmissible values, which enables us to conclude that the solution is proper 
(Table 4.6b). It will be revealed here that the autoregressive coefficients are 
statistically significant, but low in size (from 0.207 to 0.237). These coefficients 
reflect that context-specific influences on the measure are stable. We note here that a 
squared standardized autoregressive coefficient (β²) expresses its proportion in the 
variance of the variable on which it acts. For example, the effect of occas1 on occas2 
which is 0.237, means that the contribution of occas1 in the variance of occas2 is 
5.6% [(0.237)²*100]. Moreover, examination of the “R-Square” results rubric 
enables us to verify it. In fact, the R² of occas2 is 0.056; and as occas1 is the only 
influence affecting occas2, it can be deduced that 5.6% (= 0.056*100) of its variance 
depends on this sole autoregressive effect, the remainder (94.4%) depends on the 
residual variance (ζ2). The R² of occas3 is 0.044. It corresponds to the square of the 
standardized autoregressive coefficient linking occas2 to occas3 (0.209²). Thus, this 
autoregressive effect explains 4.4% of the total variance of occas3, and not the total 
variance of S_DEP3, which we will now discuss. 
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Table 4.6a. Overall goodness-of fit indices from TSO applied to the CES-D scale 
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Table 4.6b. “Regressions” rubric of TSO  
results applied to the CES-D scale (contd.) 

 

Table 4.6c. “R-Square” rubric of results for TSO  
applied to the CES-D scale (contd.) 

Variance decomposition of S_DEP factors 

The following question is the rationale behind applying th TSO to the CES-D 
scale is: what captures the construct “depression” assessed by the CES-D scale 
administred at time t? Put simply, what assesses the construct operationalized 
(defined) through the CES-D scale: a depression-trait, a depression-state or both at 
once? 

The TSO attempts to answer these questions, as it has the advantage of being able 
to partition the variance of the measure of the construct in only two parts: the part 
imputable to the stable trait and the part imputable to a specific occasion reflecting 
the state in which the respondent is at the assessment moment. 
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Table 4.6d. “Variances” results rubrics for TSO  
applied to the CES-D scale (contd.) 

To do this, the “Variances” rubric in the results (Table 4.6d) offers us the 
beginnings of an answer. The construct’s variance decomposition (S_DEP1) at the 
first instance of assessment is very clear. In fact,, the variance of the trait factor, 
Var(T_DEP) = 5.351, that of factor occas1, Var(occas1) = 4.895, bringing a total 
variance of (5.351 + 4.895) 10.246. The part imputable to trait in the total variance 
of S_DEP1 is equal to (5.351/10.246 =) 0.522, which represent 52.2% of total 
variance. The remainder, which is 47.8%, is attributable to phenomena other than 
the trait, in this case to the specific context in which the respondent finds the 
respondent is during the assessment occasion (occas1). 

For the other assessment occasions, the variance decomposition is slightly 
different, as factors occas2–occas6 have no variance to estimate like occas1, but each 
instead has a residual variable variance (ζ2 – ζ6  designated by “zeta” in the results 
table). This does not express the “occas” factor variance. The variances of ζ2 to ζ6 do 
not express the total variances of their respective factors (occas2 to occas6). The total 
variance of the “occas” contains also that of the autoregressive effect (designated by 
“beta” in the results). Thus, we must add the variance ζt (zeta) and the variance 
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imputable to the autoregressive effect to obtain the total variance of each “occasion” 
(occas2 to occas6). For example, for occas2, the autoregressive effect variance is 
obtained as follows: Var(occas1)*b² (where b = non-standardized coefficient occas1 → 
occas2). The variance of ζ2 = 3.519 (see rubric “variances” in Table 4.6). For occas3, 
the autoregressive effect variance is obtained as follows: Var(occas2)*b² (where b = 
non-standardized coefficient occas2 → occas3). For occas6, the autoregressive effect 
variance obtained is as follows: Var(occas5)*b² (where b = non-standardized 
coefficient occas5 → occas6). 

However, we can proceed differently and more simply to partition the  
variance of scores obtained on our scale at different times (S_DEPt). Here is a 
demonstration based on factor loadings provided in the results rubric “Latent 
Variables” (Table 4.6). 

We recall that at each assessment occasion t, scores (S_DEPt) are affected by two 
separate sources of influence: the “stable trait” and the time-varying factor  
“occasion”. And, as these two factors are orthogonal (not related to one another), their 
standardized loadings are equivalent to their respective correlations with factor S_DEPt, 
and their squared standarized loadings indicate their respective proportions in the 
variance of S_DEPt. For example, examining the “Latent Variables” results rubric shows 
that the standardized loading coefficient going from T_DEP to S_DEP1 is 0.723. Once 
squared, to give 0.723² = 0.522, this value indicates that factor T_DEP was responsible 
for 52.2% of S_DEP1’s total variance. The remaining 47.8% is attributable to 
factor occas1. In fact, the standardized loading coefficient of this factor (occas1) on the 
factor S_DEP1 is 0.691, which, once squared [(0.691)² = 0.478], represents 47.8%. 

The standardized loading of S_DEP2 on T_DEP is .768, which, once squared 
(0.768² = 0.589), represents the proportion of T_DEP in the variance of S_DEP2, 
which is 58.9%. The standardized loading of S_DEP2 on occas2 is 0.641, which once 
squared (0.411) indicates the proportion imputable to occas2 in S_DEP2’s variance, 
which is 41.10%. Thus, S_DEP2 owes 100% (58.9% + 41.10%) of its variance to 
these two factors. 

The standardized loading of S_DEP3, S_DEP4, S_DEP5 and S_DEP6 on  
T_DEP is 0.770, which, once squared (0.770² = 0.592), represents the proportion of 
T_DEP in their respective variance, which is 59.20%. The standardized loading of 
S_DEP3, S_DEP4, S_DEP5 and S_DEP6 on their respective factors “occas” is 
0.638, indicating once squared (0.408) the part imputable to “occas” in their 
respective variances, which is 40.80%. Thus, S_DEP3, S_DEP4, S_DEP5 and 
S_DEP6 owe 100% (59.20% + 40.80%) of their variance to these two factors. 
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It is surprising that there are different standardized loadings when these loadings 
had initially been fixed entirely at 1.00. This difference arises from the fact that the 
variables in question have different variances. 

 

Table 4.6e. “Latent Variables” rubric (factor loadings)  
of the results for TSO applied on the CES-D scale (contd.) 

It is possible, though optional, to partition the variance of each factor from occas2 to 
occas6 into two parts: the proportions imputable to the autoregressive effect and the 
proportion attributable to the residual variable (ζ). The proportion attributable to the 
autoregressive effect is calculated by squaring its standardized coefficient and 
multiplying it by the proportion of variance of the “occas” factor it influences. For 
example, the autoregressive coefficient affecting occas2 (occas1 → occas2) is 0.237. If it 
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is squared (0.237² = 0.056) and multiplied by the variance of occas2 (0.411), to give 
0.056*0.411 = 0.023, this shows that 0.023, that is 2.3% of the variance of occas2 can be 
explained by the autoregressive effect. The remainder (0.411 – 0.023 = 0.388 or 41.10% 
– 2.30% = 38.8%), i.e. 38.80% of the variance of occas2 is imputable to its residual error 
(ζ2). Table 4.7 summarises the results for the other “occas”. It will be noted that the part 
of variance imputable to the trait is weaker at t1 (0.52) than at subsequent times (0.59) 
whereas in a TSO the size of this component is constant from one moment of assessment 
to another (Var(T_DEP) = 5.351). This difference is therefore explained by differences 
in the total variance at different assessment occasions. Thus, the proportion of variance 
attributable to the stable trait  was weaker at t1, as the total variance was higher at that 
moment. The first is calculated in relation to the second. 

Parameter S_DEP1 S_DEP2 S_DEP3 S_DEP4 S_DEP5 S_DEP6 

       

Proportion of the 
trait in total variance 

.522 
(52.2%) 

.589 
(58.9%) 

.592 
(59.2%) 

.592 
(59.2%) 

.592 
(59.2%) 

.592 
(59.2%) 

Proportion of the 
autoregressive effect 

---- .023 
(2.3%) 

.018 
(1.8%) 

.018 
(1.8%) 

.018 
(1.8%) 

.018 
(1.8%) 

Proportion of the 
residual variable (ζ) 

---- .387 
(38.7%) 

.392 
(39.2%) 

.392 
(39.2%) 

.392 
(39.2%) 

.392 
(39.2%) 

Total proportion of 
“occas” factor  

.478 
(47.8%) 

.411 
(41.1%) 

.408 
(40.8%) 

.408 
(40.8%) 

.408 
(40.8%) 

.408 
(40.8%) 

Standardized 
stability coefficient 

---- .237 .209 .207 .207 .207 

NOTE. – The proportion of factor “occasion” in S_DEP’s variance is the sum of the proportion 
of the autoregressive effect and of that of the residual variable (ζ). For example, 0.411 = 0.387 
+ 0.023. The sum of the proportion of the occasion factor and that of the trait represents 100% 
of S_DEP’s variance. Similarly, the sum of the proportions of the trait factor, of the 
autoregressive effect and the residual variable represent 100% of S_DEP’s variance. For 
example, the proportion of the autoregressive effect of occas2 (= 0.023) is obtained as 
followed: (0.237)² *0.411. The proportion of the residual variable ζ2 (= 0.387) is obtained as 
followed: 0.411 – 0.023 = 0.387. 

Table 4.7. Proportions (and %) of variance in scores on the  
depression scale (CES-D) explained by TSO’s components 
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4.2.3. Concluding remarks 

Applied to depression scores obtained on six occasions using the CES-D scale, the 
TSO model makes it possible to “shed light” and remove doubts about the profound 
nature of the construct “depression” made operationalized by this scale. It would seem 
that scores on this scale capture the depression-trait (59%) rather than the depression-
state (41%), even if this greater ability to capture the depression-trait remains fairly 
slight. Others might say that the scores on this scale capture depressiveness (trait) 
rather than depressive mood (state). It will also be noted that the autoregressive 
coefficients were fairly weak (between 0.21 and 0.24) although still statistically 
significant, indicating that situational and contextual influences on observed measure 
were not very stable over time. 

We invite the reader to compare the results of STARTS and the TSO and to 
comment on the differences. 

And to close this chapter, we make some recommendations that can be applied to 
all latent trait-state models. 

First, testing a longitudinal measurement model is a requisite stage for applying 
trait-state models. This stage aims to estimate the measurement model using a 
longitudinal CFA to test a factorial model correlating all the repeated latent variables 
(see [LIU 17]). This longitudinal measurement model should also at least pass the 
weak and the strong measurement invariance tests, without which any real temporal 
change in the phenomenon measured by the construct would be confused with 
change over time  in the measure itself. It is the measure that changes and not the 
phenomenon measured. A measure is called “invariable” when a score of the same 
value still represents the same quantity of the construct measured regardless of the 
moment at which it is assessed. In our example, the longitudinal measurement model 
contains six intercorrelated latent variables (one by assessment occasion) each 
defined by three indicators, including one fixed at 1.00 to guarantee their metrics, 
and two others, each constrained to equality over time. We recommend 
autocorrelating the same indicator’s measurement errors over time to take account of 
the method’s shared variance. Specification of such a model is as follows: 

STEP 2. Specification of the longitudinal measurement model (CFA) with weak 
invariance. 
 
model.SPE <-' 
 
#1. Longitudinal CFAs (the latent variables are automatically intercorrelated). 

S_DEP1 =~ 1*CSD0DA + a*CSD0PA + b*CSD0SC 
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S_DEP2 =~ 1*CSD3DA + a*CSD3PA + b*CSD3SC 
S_DEP3 =~ 1*CSD5DA + a*CSD5PA + b*CSD5SC 
S_DEP4 =~ 1*CSD8DA + a*CSD8PA + b*CSD8SC 
S_DEP5 =~ 1*CSD10DA + a*CSD10PA + b*CSD10SC 
S_DEP6 =~ 1*CSD13DA + a*CSD13PA + b*CSD13SC 

#2. Measurement error autocorrelations (45 correlations). 

CSD0DA ~~ CSD3DA + CSD5DA + CSD8DA + CSD10DA +  
CSD13DA 
CSD3DA ~~ CSD5DA + CSD8DA + CSD10DA + CSD13DA 
CSD5DA ~~ CSD8DA + CSD10DA + CSD13DA 
CSD8DA ~~ CSD10DA + CSD13DA 
CSD10DA ~~ CSD13DA 
CSD0PA ~~ CSD3PA + CSD5PA + CSD8PA + CSD10PA +  
CSD13PA 
CSD3PA ~~ CSD5PA + CSD8PA + CSD10PA + CSD13PA 
CSD5PA ~~ CSD8PA + CSD10PA + CSD13PA 
CSD8PA ~~ CSD10PA + CSD13PA 
CSD10PA ~~ CSD13PA 
CSD0SC ~~ CSD3SC + CSD5SC + CSD8SC + CSD10SC +  
CSD13SC 
CSD3SC ~~ CSD5SC + CSD8SC + CSD10SC + CSD13SC 
CSD5SC ~~ CSD8SC + CSD10SC + CSD13SC 
CSD8SC ~~ CSD10SC + CSD13SC 
CSD10SC ~~ CSD13SC' 

STEP 3. Estimation of the longitudinal CFA. 

model.EST <- cfa (model.SPE, data = BASE, missing = 
"fiml", estimator = "MLR") 

STEP 4. Retrieving the results of the TSO. 

summary (model.EST, fit.measures = T, std = T,  
rsq = T) 

 
Then, proceed to estimate a standard TSO such as that shown in this illustration. 

Finally, if it is necessary and justified, test the different TSO with some constraints 
removed (i.e. the homogeneity of variances constraint or the homogeneity of 
autoregressive effects constraint) and compare their fit to the data with the standard 
TSO to retain the model that offers the best approximation of reality. For example, it 
might be thought that the “stable trait” factor could alone account for scores obtained 
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at different assessment occasions at different moments of measurement and that the 
autoregressive effects are therefore useless. To demonstrate, it is enough to compare 
the fit of this model (without autoregressive paths, i.e. a second-order CFA model) 
with that of a standard TSO. Using Δχ² along with Δdf, we can therefore verify the 
consequences of autoregressive effects on the model’s overall fit (i.e. any 
consequence, improvement or deterioration). 

4.3. Latent growth models 

4.3.1. General overview 

Development is intraindividual change. And as soon as change is mentioned, two 
axiomatic statements come to mind. First, everyone changes over time, but, and this is 
true of everyone, we do not change in the same way or at the same pace. For example, 
basic motor skills develop constantly between the ages of 0 and 9 years. However, 
children do not acquire these skills in the same way or at the same age. Therefore there 
are individual differences in the rhythm of this type of development and in the direction 
it may take. Secondly, change is a process that cannot be observed directly, it is therefore 
necessarily latent, but an approximation could be inferred by measuring its observable 
manifestations several times, that is longitudinally. 

Longitudinal data is rare, precious and endlessly interesting to specialists in several 
sciences. The use of longitudinal data with the aid of models combining covariance 
structure analysis and mean structure modeling is a recent advance in SEM. It is called 
latent growth modeling (a generic name covering labels such as latent curve modeling, 
latent growth curve modeling, latent trajectory modeling) that makes it possible  
to consider changes over time affecting covariances, variances and means 
simultaneously. This technique makes it possible to describe an individual’s initial 
level as well as their developmental trajectory (growth rate). It also makes it possible 
to evaluate interindividual variability in these trajectories. Finally, it offers the 
possibility of testing the effect  of predictive variables on the initial level as well as on 
growth trajectories to determine some of their causes. A simple illustration is stated 
below. 

Let us suppose that we have six repeated measures of depression in a sample of 
elderly people. The basic postulate that underpins latent growth modeling is that 
elderly people change in different ways over time. This change may be linear or non-
linear (quadratic or exponential for example). Here, let us suppose that this change is a 
linear function of time: 

yoi = ƒoi + ƒ1i (time) + εoi [4.3] 
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where: 

–  yoi is an individuals’ i depression score on one occasion o; 

– ƒoi is the intercept of each individual i, i.e. the individual’s intial level assessed 
at first data collection (baseline or initial status); 

– ƒ1i is the slope of each individual i depending on the occasion of assessment 
called “time”, i.e. their growth rate; 

– εit represents the error term (residual) related to the individual i’s score on 
occasion o, i.e. the discrepancy between the trajectory (estimated value) and the 
observed score (measure) at occasion o for this individual i. 

In Ghisletta and McArdle [GHI 12] and in Preacher et al. [PRE 08b], the reader 
will find very didactic explanations of these models. In Curran, Obeidat and Losardo 
[CUR 10], they will find practical answers to frequently asked questions about them.  

For each individual, we will now consider six repeated measures of depression 
(DEP), DEP1 at t0 (baseline), DEP2 at t1, DEP3 at t2, DEP4 at t3, DEP5 at t4 and 
DEP6 at t5; we also obtain the following system of equations: 

Baseline: DEP1 = intercept + slope (0) + ε1 

Time1: DEP2 = intercept + slope (1) + ε2 

Time2: DEP3 = intercept + slope (2) + ε3 

Time3: DEP4 = intercept + slope (3) + ε4 

Time4: DEP5 = intercept + slope (4) + ε5 

Time5: DEP6 = intercept + slope (5) + ε6 

The originality of latent growth modeling lies in treating the intercept and slope as 
latent variables (factors). Development is thus considered to be a latent phenomenon. 
Thus, in the trajectory [4.3], yoi is constitues for each individual into a sum of (1) an 
unobserved latent score (ƒoi) representing its initial latent level (intercept), (2) an 
unobserved latent score (ƒ1i) representing its latent change over time  (slope), and (3) 
the unobserved residual errors (also latent). 

By respecting the basic conventions of modeling, the previous system of 
equations can be expressed using a structural model; Figure 4.4 provides an 
illustration of this in a graph form. A covariation between residual variables (e) is 
often admitted in this type of model. The shaded part in Figure 4.4 provides an  
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illustration of it. This possibility is, in fact, one of the ways in which equation 
modeling is richer than classical models which, like ANCOVA, assume that error 
variances in repeated measures are equal and independent. 

 

Figure 4.4. A standard linear latent growth model (the double curved arrows 
represent the variances and covariances; shaded, the covariances  

between the residual variables – error terms) 

Each repeated measure is subject to the influence of two correlated latent factors.  
It will be noted that the paths expressing the direct weight of the intercept on these 
repeated measures are all fixed at 1.00, as the intercept factor represents the  
initial level (initial status) assessed as a baseline (sometimes called “time 0”) and 
which remains invariable. For example, the depression score obtained as a  
baseline remains the same and will serve as a reference to estimate the change over 
time. However, the act of fixing paths expressing the weight of latent growth factor 



216     Structural Equation Modeling with lavaan 

(slope) on the repeated measures means that we are more interested in these measures’ 
variance and above all in the intercept and the slope variances. The intercept factor 
variance provides information on interindividual differences in the measure at 
baseline, while the slope factor variance provides information on interindividual 
differences relating to change over time. By fixing the weights of the (loadings) of the 
slope factor at 0 to 5, we hypothesize a linear change. The first weight (loading) is 
fixed at zero, as null change can affect the baseline score (the initial level will not 
change at all). Moreover, fixing a path (loading) at zero amounts quite simply to 
deleting it because it no longer has any weight. 

The scaling of time is a crucial advantage in latent growth modeling. It expresses 
and specifies a priori the growth’s pattern and nature. Here the researcher need to 
choose how to numerically code the passage of time. In fact, in the system of 
equations and in Figure 4.4 that illustrates it, time has been coded in such a way as 
to express the hypothesis of linear change. The factorial loading matrices (Λ) [4.4], 
[4.5] and [4.6] express this hypothesis: 

Λݕ = ێێێۏ
1ۍێ 01 11 21 31 41 ۑۑۑے5

ېۑ
  [4.4] 

All the elements in the first column are fixed at 1.00 to express the fact that the 
intercept, that is the individual’s intial level, remains constant across the 
assessments. The linear progression in the second column expresses the hypothesis 
of a linear change with equal time intervals. Change can be coded in different 
convertible time units chosen according to the research question: 0, 1, 2, 3, 4, 5, 6 
years can be coded as 0, 12, 24, 36, 48, 60, 72 months. 

The loading matrix [4.5], while still expressing the hypothesis that change is 
linear, codes time by respecting equal time intervals separating the assessment 
occasions (two units of time [weeks/months/years] separating the assessments from 
one another): 

Λݕ = ێێێۏ
ۍێ 1 01 21 41 61 81 ۑۑۑے10

ېۑ
  [4.5] 
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However, obtaining assessments at equivalent intervals of time is not absolutely 
necessary for these models. The loading matrix [4.6] shows a slope (second column) 
with unequal time intervals: alternation between an interval with two units of time and an 
interval with three units of time between two experiments. In fact, when assessment 
occasions times are not equidistant, the time coding should take account of them and 
reflect the real intervals of time between these assessments. We emphasize however that 
the linear way in which time is coded does not affect the model’s overall fit. Nonetheless, 
it influences and directs the way in which the model’s results are interpreted: 

Λݕ = ێێێۏ
ۍێ 1 01 21 51 71 101 ۑۑۑے13

ېۑ
  [4.6] 

Similarly, in the absence of an initial hypothesis on the nature of the change, that 
is where there is an undetermined developmental trajectory, the nature of which we 
wish to explore, it is possible to free the time coding from the slope factor. 
Matrices [4.7] and [4.8] illustrate these suggestions. In [4.7] we read that the last 
three loadings of the last three assessment occasions are already free (*), and in [4.8] 
only the loading of the first assessment occasion and the loading of the last 
assessment occasion are fixed  to explore a posteriori the shape of the growth 
trajectory of the phenomenon studied: 

Λݕ = ێێێۏ
1ۍێ 01 11 31 ∗1 ∗1 ۑۑۑے∗

ېۑ
  [4.7] 

Λݕ = ێێێۏ
1ۍێ 01 ∗1 ∗1 ∗1 ∗1 ۑۑۑے5

ېۑ
  [4.8] 

Latent growth models focus interest on intraindividual change. They focus  
on the nature of this change, that is on its rhythm and shape. Their use is however 
conditioned by at least three constraints. The first is the number of assessment occasions 
required to study the change, the minimum being three. In fact, where there are  
two assessment occasions, it is impossible to determine, in the universe of the  
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possible and conceivable, the shape of the underlying developmental trajectory. It is clear 
that a multitude of different shapes (linear, polynomial) could theoretically cross both 
these assessment occasions. In addition, and it is more like a test-retest, a protocol with 
only two assessment occasions does not make it possible to distinguish real change from 
measurement error. The second addresses the psychometric properties of the measures 
used to assess the constructs under study. Temporal Measurement time-invariance is 
essential here, otherwise it is impossible to determine whether the observed change is 
imputable to variations in the measurement scale rather than to a real change in the 
phenomenon studied. This invariance should at least be strong (i.e. the temporal equality 
of the factor loadings and the measurement indicator intercepts). The third constraint 
addresses the nature of the phenomenon studied: is it a trait (or quasi-trait) or a state? 
Latent growth models are suitable for phenomena that are traits (or quasi-traits) whose 
change we wish to study. This is why a TSO could be a preliminary stage in a latent 
growth modeling. 

We return for an instant to the graph in Figure 4.4 illustrating the standard latent 
growth model. It is a first-order univariate model. It is univariate as it only models 
change in a single construct (bivariate and multivariate versions exist, Figure 4.6 
provides an illustration of them). It is a first-order model because it models observed 
measures of the construct and not latent constructs defined by multiple indicators. The 
graph in Figure 4.4 implicitly includes two important parameters, in this case the 
intercept mean and the slope mean. The graph in Figure 4.5 makes these explicit via 
the triangular constant 1.00 (see [MCA 14] for statistical details on this constant). The 
coefficients of path α1 and α2 are regressions on a constant, thus representing the 
intercept and slope factor means. The combination of two types of analysis, covariance 
structure analysis with lantent mean structure analysis, is a significant advantage of 
these models. 

The key parameters of the model in Figure 4.5 are the elements called α1 and  
V1 for the latent variable intercept, and α2 and V2 for the latent variable slope. More 
precisely, α1 represents the intercept factor mean and t V1 the variance around this 
mean. When the latter proves to be statistically significant, this indicates that there 
are interindividual differences at the initial mean level of the phenomenon measured. 
In our example, this means that at the first data collection (at time 0), participants do 
not display the same level of depression. As for α2, it represents the slope factor 
mean, that is the mean rate of change/growth in the participants over the course of 
the period studied, and V2 the variance around this mean. When slope mean (α2) 
proves to be statistically significant, this means that a substantial (non-null) 
intraindividual change has occurred. And when the variance around this mean 
proves to be statistically significant, we can infer the existence of interindividual 
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differences in this intraindividual change (for example, participants do not change in 
the same way). 

 

Figure 4.5. Latent growth model where the means are explicit (the triangles 
represent constants, α1 = intercept factor mean, α2 = slope factor mean, τ1-τ6 = 
indicator intercepts; the double curved arrows represent the variances and 
covariances; shaded, the covariances between the residual variables) 
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Figure 4.6. Bivariate latent growth model (latent growth of two constructs:  
DEP = depression, ESTEEM = self-esteem) (the double curved arrows represent the 
variances and covariances; the covariances between the error terms are represented 
by straight double arrows; the triangle represents a constant) 

The correlation between the intercept and the slope indicates the relationship 

between the initial level and the change rate. It reveals the size of the upward or 

downward trend of the phenomenon studied. However, interpreting  (this relationship 

is a delicate business, as it depends trend of growth (for example, an upward trend 

[positive slope mean] as opposed to a downward trend [negative slope mean]). When 

this relationship does not prove to be statistically significant, this suggests that the 

initial level does not predict the change in any way. A significant and positive 

relationship indicates that the initial high level predicts a substantial change in the 

phenomenon studied, whereas a negative relationship means that the initial high level 

predicts a lower level of intraindividual change. In other words, a high baseline level  
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is linked to a low level of intraindividual change. For example, participants who 
displayed a high level of depression at the start of the study (at time 0) changed less 
markedly over the course of time. 

If these main parameters reveal the existence of significant interindividual 
differences (above all concerning the slope, i.e. the change), it is useful if possible to 
explain why. Including explanatory (predictive) variables in a latent growth model could 
be an option. Figures 4.9, 4.11 and 4.12 each illustrate such an option, presenting a 
model called “conditional” as it includes some conditions (for example, the gender,  
the age at baseline) age likely to explain interindividual differences relating to 
intraindividual change. We will return to this later. 

4.3.1.1. Non-linear growth models 

Developmental trajectories cannot exist only as simple linear functions of time. 
Non-linear trajectories, that is ones that are not constant over time, are possible and 
can be envisaged. The most commonly used of these is the quadratic trajectory. 
Matrix [4.9] shows the loadings of a quadratic growth model. The first column 
represents the loadings on the intercept factor, the second the loadings on the slope 
factor modeling the linear change and the third column represents the loadings 
conveying the hypothesis of non-linear change. The loadings on the quadratic slope 
factor are the squares of the loadings on the linear slope factor. We have thus added 
a curve (growth acceleration or growth deceleration) to the linear component. 
Figure 4.7 illustrates this model in graph form: 

Λݕ = ێێۏ
1ۍێێ 0 01 1 11 2 41 3 91 4 161 5 ۑۑے25

 [4.9]  ېۑۑ

4.3.1.2. Identification of a linear latent growth model 

First, at least three assessment occasions are needed to guarantee identification of 
the model. More assessment points are needed for complex (for example non-linear 
models). The free parameters to estimate in a standard latent growth model  
(figures 4.4 and 4.5) are: (1) two variances: the intercept variance and the slope 
variance, (2) two means: the intercept mean and the slope mean, (3) a covariance 
between the intercept and slope, and (4) variances in the error terms of repeated 
residual variable variances (the number of which depends on the number of 
assessment occasions). 
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Figure 4.7. Curvilinear latent growth model (the double curved arrows represent  
the variances and covariances; the triangle represents a constant) 

Other parameters, such as correlations between error/residual terms, can be 
estimated. And other constraints can be imposed, such as variance equality of error 
terms over time. We encourage the reader to draw this model accurately, detailing 
all the free parameters to be estimated, and finally to count the number of degrees of 
freedom using the following formula: 

df = k – p ݇ = ௣∗ (௣ାଷ)ଶ  [4.10] 
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where: 

– k = the total number of information available (variances, covariances and 
means of the variables measured); 

– p = number of free parameters to estimate  

Note that the presence of means in the information counted makes these models true 
mean structure models. 

4.3.1.3. Specification of a linear latent growth model’s parameters in lavaan 
syntax 

The specification of a standard univariate latent growth model (figures 4.4, 4.5)  
in lavaan syntax occurs along two simple lines (see the box below). The first involves 
the intercepts, considered to be a latent factor whose loadings are all set at 1.00. The 
second involves the slope, a latent change factor on which loaded each repeated 
measure, each obeying a linear time coding fixed by the researcher. Time zero defines 
the intercept, that is each participant’s initial level (at time 0) in the phenomenon 
studied. The simplicity of this specification arises from the fact that lavaan offers a 
“growth” model-fitting function that automates the different details that latent growth 
models need for identification. For example, it will automatically fix the intercepts 
(estimated means) of the observed variables at zero. 

4.3.2. Illustration of an univariate linear growth model  

4.3.2.1. Model specification  

For the purposes of our illustration, we return to the data used to present the 
univariate STARTS. This is a measure repeated six times, over a period of 13 years, 
with a dimension (i.e. Depressed Affect, DA) of the CES-D depression scale  
on a sample of elderly people. Applied to these data, the latent growth model aims 
mainly to examine intraindividual change over 13 years in this component of 
depression. 

The following box presents the specification of this model in lavaan syntax 
(figures 4.4, 4.5). At STEP 2, there are two lines for model specification. The first 
involves the intercept factor. The second involves the slope factor whose time 
coding retains times intervals separating assessment occasions: zero represents the 
beginning, 3 means three years, 5 means five years, and 13 means 13 years after the 
baseline. At STEP 3, the stage reserved for commands on the model’s estimation, 
note that a new “growth” model-fiiting function appears, which will explain the 
nature of the model to be estimated to the software. 
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STEP 2. Specification of the latent growth model (Figures 4.4, 4.5). 
 
> model.SPE <- ' 
Intercept =~ 1*CSD0DA + 1*CSD3DA + 1*CSD5DA +  
1*CSD8DA + 1*CSD10DA + 1*CSD13DA 
Slope =~ 0*CSD0DA + 3*CSD3DA + 5*CSD5DA +  
8*CSD8DA + 10*CSD10DA + 13*CSD13DA' 

 

4.3.2.2. Model evaluation 

STEP 3. Model estimation using “growth” model-fitting function. 
 

model.EST <- growth (model.SPE, data = BASE, estimator 
= "MLR", missing = "fiml") 
 
STEP 4. Retrieving the results of the linear univariate latent growth  
model. 
 
summary (model.EST, fit.measures = T, std = T) 

 
It will be noted that the lavaan function for latent growth model is the model-fitting 

funxtion. A “robustness” indicator (MLR) has been retained to estimate the latent growth 
model. The missing data have been handled using the Full Information Maximum 
Likelihood (FIML) method. 

4.3.2.2.1. Overall goodness-of-fit indices 

We see from the results displayed on Table 4.8 that on the whole the data seem to 
tolerate the model well, as shown by the robust goodness-of-fit indices values: robust-
CFI = 0.966, robust-TLI = 0.968, robust-RMSEA = 0.045, and this despite a statistically 
significant χ² for reasons we already know. 

A brief word on the model’s 16 degrees of freedom: this figure is obtained by 
subtracting the number of parameters to be estimated from the total number of 
available information. The latter one counts the measure’s variances-covariances as 
well as their means. With 6 measured variables in the model, we count 21 variances-
covariances (which is [6*(6 + 1)]/2) and 6 means (those of the 6 measured 
variables), which is a total of 27 pieces of information. The number of free 
parameters in the model is broken down as follows: 2 variances (the intercept 
variance and the slope variance) variance, 2 means (the intercept mean and the  
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slope mean), 1 covariance between intercept and slope, and 6 variances (the error 
term variances), which is a total of 11 parameters to estimate. Thus, the number of 
degrees of freedom = (27 – 11) = 16. 

 

Table 4.8a. Overall goodness-of fit indices for the latent growth model in Figure 4.4 
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4.3.2.2.2. Local fit indices   

First, it makes sense not to interpret the standardized estimations, except the 
covariance between the intercept and the slope. 

Then, recall that the parameters of interest in a latent growth model are the  
intercept mean and above all the slope mean, their variances and finally the covariance 
between the intercept and the slope. These will be reviewed one by one, the continued 
part of Table 4.8. 

 

Table 4.8b. Parameter estimates from the latent growth model in Figure 4.4 (contd.) 
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The first parameters to consult are the intercept mean (initial status) and the slope 
mean (change rate), displayed in the “intercepts” rubric (here, indicating the latent 
variable means); the intercepts of the variables have been constrained to be null. Equal to 
2.90, the intercept mean, that is  depression mean level at the beginning of the study, is 
statistically significant. The same is not true of the slope mean (0.010) which, although 
positive, is not statistically significant (p = 0.199), thus indicating the absence of any 
linear change over a period of 13 years. Such a result opens the way for a hypothesis of 
non-linear change in depression, the justification for which should of course be 
supported by the literature. 

However, the model has been modified by correlating residual variables adjacent 
to one another (section #2 in the box below), and by constraining their variances to be 
equal over time (section #1). The respecification of this model is shown in the box 
below. 

STEP 2. Specification of the latent growth model (figures 4.4, 4.5) with constraints. 
 
> model.SPE <- ' 
Intercept =~ 1*CSD0DA + 1*CSD3DA + 1*CSD5DA + 1*CSD8DA 
+ 1*CSD10DA + 1*CSD13DA 
Slope =~ 0*CSD0DA + 3*CSD3DA + 5*CSD5DA + 8*CSD8DA + 
10*CSD10DA + 13*CSD13DA 
 
#1. Optional parameters: constrain the residual variables’ variances to equality 
over time. 
 
CSD0DA ~~ v*CSD0DA 
CSD3DA ~~ v*CSD3DA 
CSD5DA ~~ v*CSD5DA 
CSD8DA ~~ v*CSD8DA 
CSD10DA ~~ v*CSD10DA 
CSD13DA ~~ v*CSD13DA 
 
#2. Optional parameters: correlate the adjacent residual variables. 
 
CSD0DA ~~ CSD3DA 
CSD3DA ~~ CSD5DA 
CSD5DA ~~ CSD8DA 
CSD8DA ~~ CSD10DA 
CSD10DA ~~ CSD13DA' 
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STEP 3. Model estimation using the model-fiiting function “growth”. 
 
model.EST <- growth (model.SPE, data = BASE, estimator 
= "MLR", missing = "fiml") 
 
STEP 4. Retrieving the results of the univariate linear latent growth  
model. 
 
summary (model.EST, fit.measures = T, std = T) 

 
These modifications were not able to improve the model fit. The data collected 

among our participants does not seem to reflect a linear change in depression. Thus, the 
hypothesis of a non-linear change is becoming interesting. We therefore suggest 
testing this hypothesis. 

4.3.3. Illustration of an univariate non-linear (quadratic) latent growth 
model  

4.3.3.1. Specification of the model 

The following box details specification of a latent growth model including a 
quadratic factor (slope factor) (Figure 4.7). Another line has been added. It involves the 
non-liner change factor (called “Slope Quadratic”), whose time coding represents the 
squares of the loadings associated with the linear slope factor. 

The quadratic factor describes the upturn or downturn over time of the 
phenomenon studied beyond what is predicted by the linear factor [MUT 01]. Thus, 
the quadratic slope mean indicates the degree of quadratic curvature in the 
developmental trajectory [PRE 08b, SIN 03]. Here, the scaling of time respects the real 
chronology between assessment occasion. 

STEP 2. Specification of the non-linear latent growth model (Figure 4.7,  
with a time coding  respecting the interval between assessments). 
 
> model.SPE <- ' 
Intercept =~ 1*CSD0DA + 1*CSD3DA + 1*CSD5DA + 1*CSD8DA 
+ 1*CSD10DA + 1*CSD13DA 
LinearSlope =~ 0*CSD0DA + 3*CSD3DA + 5*CSD5DA + 
8*CSD8DA + 10*CSD10DA + 13*CSD13DA 
SlopeQuadratic =~ 0*CSD0DA + 9*CSD3DA + 25*CSD5DA + 
64*CSD8DA + 100*CSD10DA + 169*CSD13DA' 
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4.3.3.2. Evaluation of the non-linear latent growth model  

STEP 3. Model estimation using the model-fiiting function “growth”. 
 
model.EST <- growth (model.SPE, data = BASE, estimator 
= "MLR", missing = "fiml") 
 
STEP 4. Retrieving the results of the non-linear latent growth model. 
 
summary (model.EST, fit.measures = T, std = T) 

4.3.3.2.1. Overall goodness-of-fit indices  

According to the fit indices displayed in Table 4.9, and in comparison with those 
in Table 4.8, the non-linear latent growth model offers a better approximation of 
reality than the one hypothesizing a linear growth: robust-CFI = 0.987, robust- 
TLI = 0.983, robust-RMSEA = 0.032. In addition, the AIC and BIC values, often 
used in model comparison, were lower for the quadratic model, thus indicating that 
it fits the data better than the linear model. 

4.3.3.2.2. The non-linear local fit indices 

Let us begin by inspecting the “Intercepts” rubric, which offers the means of the 
models’ three main latent factors (Table 4.11). It will be noted that these means are 
all statistically significant. Those of the linear slope factor and the quadratic slope 
factor are especially interesting, as they indicate, when they are statistically 
significant, that substantial changes (linear and non-linear) took place during the 
period covering the study.  

It will be noted, and this point is not unimportant, that a linear slope mean (change) is 
negative (– 0.111) whereas the quadratic slope mean (change) is positive (0.011), 
indicating that there is a stage where depression decreases, preceding a stage where 
depression increases. We are witnessing an upward, concave growth curve (i.e. the growth 
curve is concave upward). The concavity inflection point, that is moment when the 
growth curve shifted to change direction, comes five years after the baseline (time 0).  

This inflection point is calculated as follows [SIN 03]: ିெ_௅ଶ(ெ_ொ) [4.11] 

where:  

– M_L = mean linear slope; 

– M_Q = mean  quadratic slope. 



230     Structural Equation Modeling with lavaan 

By applying this formula to our results, we obtain: 

ି(ି ଴.ଵଵଵ)ଶ(଴.଴ଵଵ)  = 5.04 

 

Table 4.9. Overall goodness-of-fit indices of the non-linear latent growth model  
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Figure 4.8. Growth curve (estimated means) of a dimension  
of depression covering a period of 13 years 

An outline of this concave curve makes the results more eloquent. One can be 
made easily using LibreOffice Calc. Figure 4.8 is an example. The x-axis represents 
the time, coded in years, covering our variable’s assessment occasions; our 
variable’s estimated means are shown on the y-axis. These are obtained by 
requesting “mean.ov” of the estimated model (here model.EST) using the 
“lavInspect” function. Table 4.10 shows its specification and results: 

 

Table 4.10. Estimated means obtained with the “lavInspect” function 



232     Structural Equation Modeling with lavaan 

The “lavInspect” function requests that the observed variables’ mean (ov = observed 
variables) of the model estimated (called “Model. EST” here) is displayed. The order of 
the items in parentheses should be maintained. 

In the graph (Figure 4.8) we see the moment that the level of depression in 
participants tips five years after the start of the study (the baseline). We see a linear 
stage where depression decreases over five years, before rising again for the 
remainder of the period of study. 

Let us now examine the “Variances” rubric in the output (Table 4.11). There, we 
read that the variances of our three latent factors are statistically significant. The 
intercept variance (9.620) shows us that there are interindividual differences 
involving the base level of depression in our participants. At the start of the study (at 
time 0), the participants do not display the same level of depression. The linear slope 
variances and the quadratic slope variances show us that there are interindividual 
differences in intra-individual change in depressive mode over the course of time, 
either linear or quadratic. 

Finally, the “Covariances” rubric shows us the relationships between the three 
latent factors. To clarify as much to start with: in a quadratic latent growth  
model, the linear and quadratic functions are over partially overlapping and so are 
difficult to interpret separately. This is why it is recommended not to attach too 
much importance to their relationship.  

We will conclude by emphasizing two points: (1) it can easily be said that a 
latent growth model with curvature provides a better description of our data than a 
linear model; (2) there are interindividual differences involving the developmental 
trajectories (linear and non-linear). 

4.3.4. Conditional latent growth model 

Where there are interindividual differences relating to intraindividual change, it is 
sometimes possible to find some of the reasons behind this. For example, could age at 
the beginning of the study (baseline), which can be highly variable (65 to 99 years in 
our sample), explain these differences? Including one or more predictive (measured 
and/or latent) variables (for example, age at baseline, gender, level of education, 
psychological variables) in a latent growth model makes it conditional latent growth 
model. Figures 4.9, 4.10 and 4.11 offer a presentation in graph form. 
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Table 4.11. Parameter estimates from the non-linear latent growth model 
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Figure 4.9. Conditional growth model with time-invariant manifest covariate/ 
predictor (gender) (the double curved arrows represent the  

variances and covariances; the triangle represents a constant) 

In a latent growth modeling, two types of explanatory predictors can be included: 

(1) time-invariant predictors (for example, baseline age, gender, ethnic identity) 

whether they are manifest (Figure 4.9) or latent (Figure 4.11), (2) time-varying 

predictors (dynamic predictors) and for which there are repeated measures (for 

example age, self-esteem, subjective health) (Figure 4.10). 
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Figure 4.10. Latent growth model with manifest time-varying covariates (ESTI) (the 
double curved arrows represent the variances and covariances; the covariances 
between covariates are represented by the double straight arrows; the triangle 
represents a constant) 
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Figure 4.11. Latent growth model with latent covariate measured  
by four indicators (the double curved arrows represent the variances  

and covariances) 

4.3.4.1. Specification of a latent growth model’s parameters with  

time-invariant covariates that are invariant with time  

Figure 4.12 includes the age of participants at the baseline as an An exogenous 

variable that predicts both the intercept and the two slopes. It will be noted that by 

Covariate 
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becoming endogenous variables under the effect of the predictive variable, the latent 
factors (intercepts and slopes) lose their variances and their covariances, but each 
gain a residual/disturbance variable (ζ1, ζ2, ζ3) whose variances and covariances will 
be estimated, reflecting the proportion of total variance  that is not imputable to age 
at baseline. The parameters called “β” represent the effects of the predictor on the 
latent factors. 

 

Figure 4.12. Conditional non-linear growth model  
(the double curved arrows represent the variances  

and covariances; the triangle represents a constant) 

It makes sense to specify that the predictive (non-dichotomous) variables should 
be centered around their mean (which means subtracting the variable value from the 
mean of the same variable (ܺ − ܺ)) before including them in the model. Not 
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centering these variables makes it difficult to interpret the intercept and slope means. 
STEP 1 in the box specifying the model on Figure 4.12 is reserved for commands, 
making it possible to center our predictive variable “age at baseline” (called 
“ageenter” in our BASE file) around the mean. The “attach ( )” function is needed to 
enable the variables in our data file to be read by R. The command “mean 
(ageenter)” makes it possible to verify that the variable has been well and truly 
centered. 

STEP 1. Importing data. 

> BASE <-read.csv2 (file = file.choose( ), sep = ";", 
dec = ",") 
# Centering around the predictive variable mean “ageenter”. 

> attach (BASE) 
> BASE$ageenter = ageenter  - mean (ageenter) 
> mean (ageenter) # Option to verify that the variable 
has been centered. 

STEP 2. Specification of the conditional latent growth model (figure 4.12). 

> model.SPE <- ' 
Intercept =~ 1*CSD0DA + 1*CSD3DA + 1*CSD5DA + 1*CSD8DA 
+ 1*CSD10DA + 1*CSD13DA 
LinearSlope =~ 0*CSD0DA + 3*CSD3DA + 5*CSD5DA + 
8*CSD8DA + 10*CSD10DA + 13*CSD13DA 
QuadraticSlope =~ 0*CSD0DA + 9*CSD3DA + 25*CSD5DA + 
64*CSD8DA + 100*CSD10DA + 169*CSD13DA 
Intercept ~ ageenter 
LinearSlope ~ ageenter 
QuadraticSlope ~ ageenter' 

4.3.4.2. Evaluation the conditional non-linear latent growth model’s solution 

STEP 3. Model estimation using “growth” function. 

model.EST <- growth (model.SPE, data = BASE, estimator 
= "MLR", missing = "fiml") 
 
STEP 4. Obtaining the solution of the conditional latent growth model. 

summary (model.EST, fit.measures = T, std = T,  
rsq = T) 
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Here, we will merely focus on the solution’s local indices  whose overall fit has 
proven to be excellent. Table 4.12 offers an extract of it. “Regressions” displays the 
effects of the (“ageenter”) predictor on the model’s three latent factors. Two effects 
have proven statistically significant and positive: the effect of baseline age on the 
intercept (β = 0.090, p = 0.000), indicating that the older the participant, the higher 
their level of depression at baseline, and the effect of baseline age on the linear slope 
(β = 0.123, p = 0.006), suggesting that the older the participant at baseline the higher 
their linear trajectory of depression. Baseline age had no significant effect on the 
curvature of the developmental trajectory (β = – 0.107, p = 0.100). 

 

Table 4.12. Parameter estimates for the conditional non-linear  
latent growth model (Figure 4.12) 
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The results in the “R-Square” (R²) rubric are worth commenting on. There, we read 
that participants’ at the beginning of the study explains less than 1% of the intercept 
variance (R² = 0.008, which is 0.8%), explains 1.5% of linear change (slope) and 1.1% 
of variance in quadratic change. This means that other variables are needed to attempt 
to explain the interindividual differences relating to intraindividual change in our 
participants’ depression. 

4.3.5. Second-order latent growth model 

It can never be emphasized enough that the major limitation of first order latent 
growth models lies in the fact that they analyze repeated measures that are assumed to be 
without measurement error. Just like the STARTS model, the univariate latent growth 
models that we have just introduced are not without this limitation. So, when data and 
sample size permit, it is preferable to opt for second-order models, that is those that 
include latent variable with multiple indicators. We will explore this option for latent 
growth models; Figure 4.13 offers an illustration in diagram form. 

The model shown in Figure 4.13 is a hierarchical one. It is a second-order latent 
growth model. Each first-order latent factor “depression” (DEP1 to DEP6) has three 
indicators (i.e. three CES-D sub-dimensions, PA, DA and SC) assessed six times 
over a 13-year period. On each assessment occasion, each of the first order latent 
variables is defined by each indicator’s intercept (estimated mean), the factor 
loading and the measurement error (in other words, each indicator in influenced by 
its own intercept, the factor weight, and measurement error). Generally, it will be 
noted that the same indicator’s measurement errors are auto-correlated over time to 
take account of the shared method variance. The model hypothesizes a linear 
developmental trajectory. Thus, the intercept (initial status) and linear slope are the 
second-order factors (situated on two levels, below the indicators) and obeying the 
same constraints and time coding as those at work in the univariate linear models. 
Unlike the first-order univariate model, the intercept and slope do not act directly on 
the observed measures, but indirectly, via the latent variables, whose observed 
measures are the indicators. Just like the first order latent growth model, the 
intercept and slope means and variances are the key parameters of a second-order 
latent growth model. The advantage here, and it is a fairly significant one, is that 
estimations of such a model consider measurement errors relating to the indicators 
[CHA 98]. In addition, the second-order latent growth model captures change 
directly at the level of the construct itself rather than at the level of its indicators. 
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Figure 4.13. Second-order latent growth model (the double curved arrows represent 
the variances; the triangles represent the constants; the covariances between the 
measurement errors are represented by the straight doubles arrows; τ1- τ18 = 
indicator intercepts) 

4.3.5.1. Identification of a second-order latent growth model  

Because latent growth models are both models of covariance and mean structures, 
their identification is quite unique. The identification of firs-order factors is worth 
pausing over. Fixing a reference indicator loading at 1.00 to ensure a latent variable 
metric is an already known approach (covariance structure). For second order latent 
growth models, one should instead fix the reference indicator intercept at zero to 
ensure the metric of the latent variable's mean structure [HAN 01, STO 04]. We recall 
that a latent variable has no observed mean. Thus, on each assessment occasion, the 
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metric of the first order factor mean will be based on the true, observed reference 
indicator mean and not on its intercept (i.e. the estimated mean), such that the second 
order latent variable means and variances (intercept and slope) will depend on the 
reference indicator’s observed mean. Thus, the second order factors (intercept and 
slope) will directly capture the first order factor means, which are quite simply the 
reference indicator means. This is why it is not necessary to specify the estimation of 
the first order variable means since they automatically capture the reference indicator 
mean [CHA 98, HAN 01, LIT 13]. 

Moreover, the second-order latent growth model requires at least the strong 
hypothesis of time-invariance measurement. This hypothesis, having easily become 
verifiable in this type of model, guarantees that the construct will have been assessed 
on each occasion with the same measure. It also makes it possible to ensure  
that change occurs at the level of the construct (latent variable) rather than at the 
level of the observed variables (indicators) used to measure this construct  
[FER 08]. 

4.3.5.2. Illustration of a second-order latent growth model 

We will use the model shown in Figure 4.13 as an illustration. It will be subject 
to the data already used to illustrate the TSO. At each assessment time, the latent 
variable “depression” is defined/assessed with three indicators, which are sub-
dimensions of the CES-D scale. 

4.3.5.2.1. Specification in lavaan syntax  of a second-order latent growth 
model 

The box below details the syntax that lavaan will need to estimate the model 
illustrated by Figure 4.13. 

STEP 2. Specification of the second-order latent growth model (Figure 4.13). 
 
model.SPE <- ' 
 
#1. First order latent “DEP” variables (weak invariance ). 
 
DEP1 =~ 1*CSD0DA + a*CSD0PA + b*CSD0SC 
DEP2 =~ 1*CSD3DA + a*CSD3PA + b*CSD3SC 
DEP3 =~ 1*CSD5DA + a*CSD5PA + b*CSD5SC 
DEP4 =~ 1*CSD8DA + a*CSD8PA + b*CSD8SC 
DEP5 =~ 1*CSD10DA + a*CSD10PA + b*CSD10SC 
DEP6 =~ 1*CSD13DA + a*CSD13PA + b*CSD13SC 
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#2. Fixing the reference indicators’ intercepts at zero . 

CSD0DA ~ 0*1 
CSD3DA ~ 0*1 
CSD5DA ~ 0*1 
CSD8DA ~ 0*1 
CSD10DA ~ 0*1 
CSD13DA ~ 0*1 
 
#3. Do not estimate (i.e. fix at zero) the first-order latent variable means. 

DEP1 ~ 0*1 
DEP2 ~ 0*1 
DEP3 ~ 0*1 
DEP4 ~ 0*1 
DEP5 ~ 0*1 
DEP6 ~ 0*1 
 
#4. Constrain the other indicators’ intercepts to strong time equivalence 
(invariance). 

CSD0PA ~ w*1 
CSD0SC ~ z*1 
CSD10PA ~ w*1 
CSD10SC ~ z*1 
CSD13PA ~ w*1 
CSD13SC ~ z*1 
CSD3PA ~ w*1 
CSD3SC ~ z*1 
CSD5PA ~ w*1 
CSD5SC ~ z*1 
CSD8PA ~ w*1 
CSD8SC ~ z*1 
 
#5. Measurement error autocorrelations (45 correlations, which is 15 for each 
indicator). 

CSD0DA ~~ CSD3DA + CSD5DA + CSD8DA + CSD10DA + CSD13DA 
CSD3DA ~~ CSD5DA + CSD8DA + CSD10DA + CSD13DA 
CSD5DA ~~ CSD8DA + CSD10DA + CSD13DA 
CSD8DA ~~ CSD10DA + CSD13DA 
 
CSD10DA ~~ CSD13DA 
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CSD0PA ~~ CSD3PA + CSD5PA + CSD8PA + CSD10PA + CSD13PA 

CSD3PA ~~ CSD5PA + CSD8PA + CSD10PA + CSD13PA 
CSD5PA ~~ CSD8PA + CSD10PA + CSD13PA 
CSD8PA ~~ CSD10PA + CSD13PA 
CSD10PA ~~ CSD13PA 

CSD0SC ~~ CSD3SC + CSD5SC + CSD8SC + CSD10SC + CSD13SC 
CSD3SC ~~ CSD5SC + CSD8SC + CSD10SC + CSD13SC 
CSD5SC ~~ CSD8SC + CSD10SC + CSD13SC 
CSD8SC ~~ CSD10SC + CSD13SC 
CSD10SC ~~ CSD13SC 

#6. Second-order factors of the linear model. 

Intercept =~ 1*DEP1 + 1*DEP2 +1*DEP3 +1*DEP4 + 1*DEP5 + 
1*DEP6 
LinearSlope =~ 0*DEP1 + 3*DEP2 + 5*DEP3 + 8*DEP4 + 
10*DEP5 + 13*DEP6' 

 
The first five sections relate to specification of the parameters of the model’s 

first-order factors. The strong measurement invariance is expressed by the 
invariance over time of both factor loadings (section  #1) and indicators’ intercepts 
loadings (section #4). The command in section #2 provides each first-order latent 
variable with a mean structure measure metric by fixing the intercept of their 
reference indicator, at zero. The mean of each first-order latent variable must also be 
fixed at zero (section #3), as this will be captured by the second order factors 
through the observed reference indicator mean. The last section (section #6) 
involves second-order factors, whose effects directly influence the first-order latent 
variables according to a linear time coding, comparable to that applied to the 
univariate model. 

4.3.5.2.2. Evaluation of the second-order linear model 

STEP 3. Model estimation using “growth” function. 

model.EST <- growth (model.SPE, data = BASE, estimator 
= "MLR", missing = "fiml") 

STEP 4. Retrieving the results of the second order linear model. 

summary (model.EST, fit.measures = T, std = T,  
rsq = T) 
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Here too, a “robust” estimator (MLR) has been retained indicate to estimate the 
second-order latent growth model and the missing data have been handled using the 
Full Information Maximum Likelihood (FIML) method. 

The model’s overall fit has proven to be highly satisfactory. An inspection of local 
indices reveals that the slope mean was not statistically significant, suggesting the 
absence of linear change in depression. This result, conforming to that obtained using 
the previous first-order univariate model invites us to test a curvilinear latent growth 
model, in this case a quadratic one. 

The specification of such a model is identical to that of the linear model with one 
exception, which is that the latent quadratic factor is added, provided with an 
appropriate time coding  (section #6). The box below shows this addition. 

#6. The second order factors of the curvilinear model (linear and quadratic coding). 

Intercept =~ 1*DEP1 + 1*DEP2 +1*DEP3 +1*DEP4 + 1*DEP5 + 
1*DEP6 
LinearSlope =~ 0*DEP1 + 3*DEP2 + 5*DEP3 + 8*DEP4 + 
10*DEP5 + 13*DEP6 
QuadraticSlope =~ 0*DEP1 + 9*DEP2 + 25*DEP3 + 64*DEP4 
+100*DEP5 + 169*DEP6 
' 

4.3.5.2.3. Evaluation of the solution of the curvilinear second-order model 

STEP 3. Model estimation using “growth” model-fitting function. 

model.EST <- growth (model.SPE, data = BASE, estimator 
= "MLR", missing = "fiml") 

STEP 4. Retrieving results of the second-order curvilinear model. 

summary(model.EST, fit.measures = T, std = T, rsq = T) 
 
Although χ² is significant (443.42, df = 107, p = 0.000), the other goodness-of-fit 

indices show that the model fits the data very well. Here, we will spare the reader, as 
far as possible, the irrelevant detail on a model’s overall fit. Instead, we will draw 
their attention to the local indices, in this case the model’s essential parameters. 

The “intercepts” rubric, of which an extract is shown in Table 4.13, shows that the 
means of the three second-order latent factors are statistically significant at p = 0.000. 
This result indicates the existence of linear as well as curvilinear change.  
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The y-axis values on this figure are the first-order latent variable means (DEP1 
to DEP6). Table 4.14 shows the command syntax to obtain them using the 
“lavInspect” function, as well as our model’s results: 

 

Table 4.14. Latent variable means for the second-order  
model obtained by using the “lavInspect” function 

The “lavInspect” function requests the restitution of the estimated model’s 
(called “Model.EST” here) latent variable (lv = latent variables) means. It will be 
noted that the output offers the means of all our model’s latent variables, that is the 
six first order latent variables (DEP1 – DEP6) as well as the three second-order 
latent variables (the intercept, the linear slope and the quadratic slope). 

This figure’s perfect resemblance to Figure 4.8 will not have escaped anyone. 
Nevertheless, the first illustrates a growth trajectory based on the scores of one of 
the three dimensions of the CES-D scale, while the second illustrates a trajectory 
based on the latent variable scores assessed by the three dimensions of the CES-D 
scale. This perfect resemblance is explained by the fact that the dimension used to 
illustrate the first-order univariate model (Figure 4.7) has been retained in the 
second-order model as a reference indicator whose intercept has been fixed at zero 
to offer the mean structure metric for each latent variable. On each assessment 
occasion, the latent variables have captured to the mean of this reference dimension. 
Hence the impossibility of reading and interpreting this mean as an absolute value. It 
is useful only to examine the evolution of the measured phenomenon over time, 
hence too the importance of choosing the reference indicator. We underline here, 
and this is fundamental and not remotely optional, that it is one of the limitations of 
the reference indicator strategy commonly used to identify a model. In Little  
[LIT 13] the reader will find a sustained critique of this strategy, as well as 
alternative strategies documented by the author. 

The “Variances” rubric, an extract of which is shown in Table 4.15,  
shows that the variances around these means are statistically significant  
to p = 0.00, suggesting the existence of interindividual differences relating to intra-
individual linear as well as curvilinear change in our participants’ depression  
over a 13-year period. 
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Table 4.15. Extract from the “Variances” rubric for results of the curvilinear model 

displaying their variances around the means of three second-order factors 

It is possible, indeed desirable, to introduce time-invariant as well as time-varying 
covariates, measured as well as latent into a second-order growth model to attempt to 
explain these interindividual differences. These covariates will have the status of 
exogenous predictors affecting each of the three second-order latent variables 
(intercept, linear slope and quadratic slope). 

We emphasize here that this way of predictor within latent growth models forms 
part of predictors is in line with a variable-oriented approach centered on the 
variables used to explain interindividual differences (heterogeneity) relating to 
intraindividual change. However, the heterogeneity of intraindividual change could 
be understood through an person-oriented approach centered on the individuals and 
not on the variables. For example, a multigroup analysis of latent growth makes it 
possible to explicitly examine change differences across predetermined groups (by 
gender, by age group, men versus women; young people versus adults). In absence 
of pre-selected subgroups, latent growth mixture modeling offers the possibilities of 
examining the heterogeneity of growth trajectories [MUT 99, NAG 99]. It is called 
“mixture” since it is a powerful and flexible technique combining latent growth 
analysis and latent class analysis. Far from being a recent development [GRE 51, 
LAZ 55], it is based on the general concept of categorical latent variables. It makes 
it possible to estimate an individual’s membership of a discreet (unobserved) class 
from a set of variables. We define “class” as a sub-group of individuals situated at a 
at the same level in a latent variable. Integration of categorical latent variables 
within structural equation modeling where continuous latent variables predominate 
has gone some way to removing limitations more and has further extended the 
functions of equation modeling [MUT 02a]. Latent class growth modeling is a 
particular example of latent growth mixture modeling. So long as we can assume the 
existence of latent sources (classes) explaining the heterogeneity of developmental 
trajectories, it is preferable to resort to latent growth mixture modeling. This 
modeling hypothesizes that a population is thought to be formed of homogenous 
sub-groups (classes), each having its own specific growth trajectory. Identifying 
these latent homogenous classes, which are sources of heterogeneity within the  
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study population, is the main objective of this type of modeling. In addition, within   
latent growth mixture modeling, data  can  be  simultaneously  analyzed through 
both variable and person-oriented approaches. For reasons of space, we will say that 
conceptually, latent class growth models aim to identify distinct sub-groups of 
individuals who have similar and homogenous growth profiles. These models thus 
highlight intraclass growth homogeneity and interclass growth heterogeneity. 
However, growth mixture modeling makes it possible to identify different latent 
classes (i.e. interclass growth heterogeneity) within which there may be individual 
differences (i.e. interclass growth heterogeneity). 

We will not say anything further on this second extension provided by equation 
modeling. There are at least three reasons for this: first, this book has not tackled the 
logical basis for latent class models; second, the current version of lavaan does not 
allow these models to be estimated and finally, and above all because they merit it, 
there will be a monograph on them when their estimation is implemented, quite soon 
it seems, in lavaan. 

4.4. Further reading 

Readers who wish to know more about the main concepts addressed in this 
chapter can consult the following works: 

BLALOCK H.J., Causal Models in Experimental Designs, Aldine Transaction, New Brunswick, 
2009. 

LITTLE T.D., Longitudinal Structural Equation Modeling, Guilford Press, New York, 2013. 

MCARDLE J.J., NESSELROADE J.R., Longitudinal Data Analysis Using Structural Equation 
Models, American Psychological Association, Washington, 2014. 

NEWSOM J.T., Longitudinal Structural Equation Modeling: A Comprehensive Introduction, 
Routledge/Taylor & Francis Group, New York, 2015. 

PREACHER K.J., WICHMAN A.L., MACCALLUM R.C. et al., Latent Growth Curve Modeling, 
Sage Publications, London, 2008.  
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