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Preface

This book focuses on tools and techniques for building regression models using 
real-world data and assessing their validity. A key theme throughout the book is that 
it makes sense to base inferences or conclusions only on valid models.

Plots are shown to be an important tool for both building regression models and 
assessing their validity. We shall see that deciding what to plot and how each plot 
should be interpreted will be a major challenge. In order to overcome this challenge 
we shall need to understand the mathematical properties of the fitted regression 
models and associated diagnostic procedures. As such this will be an area of focus 
throughout the book. In particular, we shall carefully study the properties of residu-
als in order to understand when patterns in residual plots provide direct information 
about model misspecification and when they do not.

The regression output and plots that appear throughout the book have been gener-
ated using R. The output from R that appears in this book has been edited in minor 
ways. On the book web site you will find the R code used in each example in the text. 
You will also find SAS-code and Stata-code to produce the equivalent output on the 
book web site. Primers containing expanded explanation of R, SAS and Stata and 
their use in this book are also available on the book web site. Purpose-built functions 
have been written in SAS and Stata to cover some of the regression procedures dis-
cussed in this book. Examples include a multivariate version of the Box-Cox trans-
formation method, inverse response plots and marginal model plots.

The book contains a number of new real data sets from applications ranging 
from rating restaurants, rating wines, predicting newspaper circulation and maga-
zine revenue, comparing the performance of NFL kickers and comparing finalists 
in the Miss America pageant across states. In addition, a number of real data sets 
that have appeared in other books are also considered. The practice of considering 
contemporary real data sets was begun based on questions from students about how 
regression can be used in real life. One of the aspects of the book that sets it apart 
from many other regression books is that complete details are provided for each 
example. This completeness helps students better understand how regression is 
used in practice to build different models and assess their validity.

Included in the Exercises are two different types of problems involving data. In 
the first, a situation is described and it is up to the students to develop a valid regres-
sion model. In the second type of problem a situation is described and then output 
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viii Preface

from one or models is provided and students are asked to comment and provide 
conclusions. This has been a conscious choice as I have found that both types of 
problems enhance student learning.

Chapters 2, 3 and 4 look at the case when there is a single predictor. This again 
has been a conscious choice as it enables students to look at many aspects of regres-
sion in the simplest possible setting. Chapters 5, 6, 7 and 9 focus on regression 
models with multiple predictors. In Chapter 8 we consider logistic regression. 
Chapter 9 considers regression models with correlated errors. Finally, Chapter 10 
provides an introduction to random effects and mixed models.

Throughout the book specific suggestions are given on how to proceed when 
performing a regression analysis. Flow charts providing step-by-step instructions 
are provided first for regression problems involving a single predictor and later for 
multiple regression problems. The flow charts were first produced in response to 
requests from students when this material was first taught. They have been used 
with great success ever since.

Chapter 1 contains a discussion of four real examples. The first example high-
lights a key message of the book, namely, it is only sensible to base decisions of 
inferences on a valid regression model. The other three examples provide an indica-
tion of the practical problems one can solve using the regression methods discussed 
in the book.

In Chapter 2 we consider problems involving modeling the relationship between 
two variables. Throughout this chapter we assume that the model under considera-
tion is a valid model (i.e., correctly specified.)

In Chapter 3 we will see that when we use a regression model we implicitly 
make a series of assumptions. We then consider a series of tools known as regres-
sion diagnostics to check each assumption. Having used these tools to diagnose 
potential problems with the assumptions, we look at how to first identify and then 
overcome or deal with problems with assumptions due to nonconstant variance or 
nonlinearity. A primary aim of Chapter 3 is to understand what actually happens 
when the standard assumptions associated with a regression model are violated, and 
what should be done in response to each violation.

In Chapter 3, we show that it is sometimes possible to overcome nonconstant 
error variance by transforming the response and/or the predictor variables. In 
Chapter 4 we consider an alternative way of coping with nonconstant error vari-
ance, namely weighted least squares.

Chapter 5 considers multiple linear regression problems involving modeling the 
relationship between a dependent variable and two or more predictor variables. 
Throughout Chapter 5, we assume that the multiple linear regression model under 
consideration is a valid model for the data. Chapter 6 considers regression diagnos-
tics to check each of these assumptions associated with having a valid multiple 
regression model.

In Chapter 7 we consider methods for choosing the “best” model from a class of 
multiple regression models, using what are called variable selection methods. We 
discuss the consequences of variable selection on subsequent inferential proce-
dures, (i.e., tests and confidence intervals).
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Chapter 8 considers the situation in which the response variable follows a bino-
mial distribution rather than a continuous distribution. We show that an appropriate 
model in this circumstance is a logistic regression model. We consider both infer-
ential and diagnostic procedures for logistic regression models.

In many situations data are collected over time. It is common for such data sets 
to exhibit serial correlation, that is, results from the current time period are corre-
lated with results from earlier time periods. Thus, these data sets violate the 
assumption that the errors are independent, an important assumption necessary for 
the validity of least squares based regression methods. Chapter 9 considers regres-
sion models when the errors are correlated over time. Importantly, we show how to 
re-specify a regression model with correlated errors as a different but equivalent 
regression model with uncorrelated errors. We shall discover that this allows us to 
use the diagnostic methods discussed in earlier chapters on problems with corre-
lated errors.

Chapter 10 contains an introduction to random effects and mixed models. We 
again stress the use of re-specifying such models to obtain equivalent models with 
uncorrelated errors.

Finally, the Appendix discusses two nonparametric smoothing techniques, 
namely, kernel density estimation and nonparametric regression for a single 
predictor.

The book is aimed at first-year graduate students in statistics. It could also be 
used for a senior undergraduate class. The text grew out of a set of class notes, used 
for both a graduate and a senior undergraduate semester-long regression course at 
Texas A&M University. I am grateful to the students who took these courses. 
I would like to make special mention of Brad Barney, Dana Bergstresser, Charles 
Lindsey, Andrew Redd and Elizabeth Young. Charles Lindsey wrote the Stata code 
that appears in the Stata primer that accompanies the book. Elizabeth Young, along 
with Brad Barney and Charles Lindsey, wrote the SAS code that appears in the SAS 
primer that accompanies the book. Brad Barney kindly provided the analyses of the 
NFL kicker data in Chapter 1. Brad Barney and Andrew Redd contributed some of 
the R code used in the book.

Readers of this book will find that the work of Cook and Weisberg has had a 
profound influence on my thinking about regression. In particular, this book con-
tains many references to the books by Cook and Weisberg (1999b) and Weisberg 
(2005).

The content of the book has also been influenced by a number of people. Robert 
Kohn and Geoff Eagleson, my colleagues for more than 10 years at the University 
of New South Wales, taught me a lot about regression but more importantly about 
the importance of thoroughness when it comes to scholarship. My long-time col-
laborators on nonparametric statistics, Tom Hettmansperger and Joe McKean have 
helped me enormously both professionally and personally for more than 20 years. 
Lively discussions with Mike Speed about valid models and residual plots lead 
to dramatic changes to the examples and the discussion of this subject in Chapter 
6. Mike Longnecker, kindly acted as my teaching mentor when I joined Texas 
A&M University in 2005. A number of reviewers provided valuable comments and 
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suggestions. I would like to especially acknowledge Larry Wasserman, Bruce 
Brown and Fred Lombard in this regard. Finally, I am grateful to Jennifer South 
who painstakingly proofread the whole manuscript.

The web site that accompanies the book contains R, SAS and Stata code and 
primers, along with all the data sets from the book can be found at www.stat.tamu.
edu/~sheather/book. Also available at the book web site are online tutorials on 
matrices, R and SAS.

College Station, Texas Simon Sheather
October 2008
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   Chapter 1   

  Introduction         

  1.1 Building Valid Models  

 This book focuses on tools and techniques for building valid regression models 
for real-world data. We shall see that a key step in any regression analysis is 
assessing the validity of the given model. When weaknesses in the model are 
identified the next step is to address each of these weaknesses. A key theme 
throughout the book is that  it makes sense to base inferences or conclusions only 

on valid models . 
 Plots will be an important tool for both building regression models and assessing 

their validity. We shall see that deciding what to plot and how each plot should be 
interpreted will be a major challenge. In order to overcome this challenge we shall 
need to understand the mathematical properties of the fitted regression models and 
associated diagnostic procedures. As such this will be an area of focus throughout 
the book.  

  1.2 Motivating Examples  

 Throughout the book we shall carefully consider a number of real data sets. The 
following examples provide examples of four such data sets and thus provide an 
indication of what is to come. 

  1.2.1 Assessing the Ability of NFL Kickers 

 The first example illustrates the importance of only basing inferences or conclu-
sions on a valid model. In other words, any conclusion is only as sound as the 
model on which it is based. 

S.J. Sheather, A Modern Approach to Regression with R, 1
DOI: 10.1007/978-0-387-09608-7_1, © Springer Science + Business Media LLC 2009



2 1 Introduction

 In the Keeping Score column by Aaron Schatz in the Sunday November 12, 
2006 edition of the  New York Times  entitled “N.F.L. Kickers Are Judged on the 
Wrong Criteria” the author makes the following claim: 

 There is effectively no correlation between a kicker’s field goal percentage one season and 
his field goal percentage the next.   

 Put briefly, we will show that once the different ability of field goal kickers is 
taken into account, there is a highly statistically significant  negative correlation  
between a kicker’s field goal percentage one season and his field goal percentage 
the next. 

 In order to examine the claim we consider data on the 19 NFL field goal kickers 
who made at least ten field goal attempts in each of the 2002, 2003, 2004, 2005 
seasons and at the completion of games on Sunday, November 12, in the 2006 
season. The data were obtained from the following web site   http://www.rototimes.
com/nfl/stats     (accessed November 13, 2006). The data are available on the book 
web site, in the file FieldGoals2003to2006.csv. 

 Figure  1.1  contains a plot of each kicker’s field goal percentage in the current 
year against the corresponding result in the previous year for years 2003, 2004, 
2005 and for 2006 till November 12.    

 It can be shown that the resulting correlation in Figure  1.1  of –0.139 is not 
statistically significantly different from zero ( p -value = 0.230). This result is 
in line with Schatz’s claim of “effectively no correlation.” However, this 
approach is  fundamentally flawed  as it fails to take into account the potentially 

  Figure 1.1    A plot of field goal percentages in the current and previous year       
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1.2 Motivating Examples 3

different abilities of the 19 kickers. In other words this approach is based on 
an  invalid model . 

 In order to take account of the potentially different abilities of the 19 kickers we 
used linear regression to analyze the data in Figure  1.1 . In particular, a separate 
regression line can be fit for each of the 19 kickers. There is very strong evidence 
that the intercepts of the 19 lines differ ( p -value = 0.006) but little evidence that the 
slopes of the 19 lines differ ( p -value = 0.939). (Details on how to perform these 
calculations will be provided in Chapter 5.) Thus, a valid way of summarizing the 
data in Figure  1.1  is to allow a different intercept for each kicker, but to force the 
same slope across all kickers. This slope is estimated to be –0.504. Statistically, it 
is highly significantly different from zero ( p -value < 0.001). 

 Figure  1.2  shows the data in Figure  1.1  with a regression line for each kicker 
such that each line has the same slope but a different intercept.    

 There are two notable aspects of the regression lines in Figure  1.2 . Firstly, the 
common slope of each line is negative. This means that if a kicker had a high field 
goal percentage in the previous year then they are predicted to have a lower field 
goal percentage in the current year. Let q

i
 denote the true average field goal per-

centage of kicker  i , the negative slope means that a field goal percentage one year 
above q

i
 is likely to be followed by a lower field goal percentage, i.e., one that has 

shrunk back toward q
i
. (We shall discuss the concept of shrinkage in Chapter 10.) 

Secondly, the difference in the heights of the lines (i.e., in the intercepts) is as 
much as 20%, indicating a great range in performance across the 19 kickers.  

  Figure 1.2    Allowing for different abilities across the 19 field goal kickers       
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4 1 Introduction

  1.2.2 Newspaper Circulation 

 This example illustrates the use of so-called dummy variables along with trans-
formations to overcome skewness. 

 Imagine that the company that publishes a weekday newspaper in a mid-size 
American city has asked for your assistance in an investigation into the feasibility 
of introducing a Sunday edition of the paper. The current circulation of the 
company’s weekday newspaper is 210,000. Interest centers on developing a regres-
sion model that enables you to predict the Sunday circulation of a newspaper with 
a weekday circulation of 210,000. 

 Actual circulation data from September 30, 2003 are available for 89 US news-
papers that publish both weekday and Sunday editions. The first 15 rows of the data 
are given in Table  1.1 . The data are available on the book web site, in the file 
circulation.txt.    

 The situation is further complicated by the fact that in some cities there is more 
than one newspaper. In particular, in some cities there is a tabloid newspaper along 
with one or more so-called “serious” newspapers as competitors. 

 The last column in Table  1.1  contains what is commonly referred to as a  dummy 

variable . In this case it takes value 1 when the newspaper is a tabloid with a serious 
competitor in the same city and value 0 otherwise. For example, the  Chicago 

Sun-Times  is a tabloid while the  Chicago Herald  and the  Chicago Tribune  are seri-
ous competitors. 

 Given in Figure  1.3  is a plot of the Sunday circulation versus weekday circula-
tion with the dummy variable tabloid identified. We see from Figure  1.3  that the 
data for the four tabloid newspapers are separated from the rest of the data and that 
the variability in Sunday circulation increases as weekday circulation increases. 
Given below in Figure  1.4  is a plot of log(Sunday circulation) versus log(weekday 
circulation). Here, and throughout the book, “log” stands for log to the base  e . 
Taking logs has made the variability much more constant.       

 We shall return to this example in Chapter 6.  

 Newspaper 
 Sunday 
 circulation  

 Weekday 
 circulation  

 Tabloid with a 
 serious competitor   

  Akron Beacon Journal     (OH)  185,915  134,401  0 

  Albuquerque Journal   (NM)   154,413  109,693  0 

  Allentown Morning Call   (PA)   165,607  111,594  0 

  Atlanta Journal-Constitution   (GA)   622,065  371,853  0 

  Austin American-Statesman   (TX)   233,767  183,312  0 

  Baltimore Sun   (MD)   465,807  301,186  0 

  Bergen County Record   (NJ)   227,806  179,270  0 

  Birmingham News   (AL)   186,747  148,938  0 

  Boston Herald   (MA)   151,589  241,457  1 

  Boston Globe   (MA)   706,153  450,538  0 

 Table 1.1    Partial list of the newspaper circulation data (circulation.txt) (  http://www.editorand 
publisher.com/eandp/yearbook/reports_trends.jsp”    . Accessed November 8, 2005)  
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  Figure 1.3    A plot of Sunday circulation against Weekday circulation       
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  Figure 1.4    A plot of log(Sunday Circulation) against log(Weekday Circulation)       
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  1.2.3 Menu Pricing in a New Italian Restaurant in New York City 

 This example highlights the use of multiple regression in a practical business 
setting. It will be discussed in detail in Chapters 5 and 6. 

 Imagine that you have been asked to join the team supporting a young New York 
City chef who plans to create a new Italian restaurant in Manhattan. The stated aims 
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of the restaurant are to provide the highest quality Italian food utilizing state-of-the-
art décor while setting a new standard for high-quality service in Manhattan. The 
creation and the initial operation of the restaurant will be the basis of a reality TV 
show for the US and international markets (including Australia). You have been 
told that the restaurant is going to be located no further south than the Flatiron 
District and it will be either east or west of Fifth Avenue. 

 You have been asked to determine the pricing of the restaurants dinner menu such 
that it is competitively positioned with other high-end Italian restaurants in the target 
area. In particular, your role in the team is to analyze the pricing data that have been 
collected in order to produce a regression model to predict the price of dinner. Actual 
data from surveys of customers of 168 Italian restaurants in the target area are avail-
able. The data are in the form of the average of customer views on

    Y  = Price = the price (in $US) of dinner (including one drink & a tip)  
   x  

 1 
  = Food = customer rating of the food (out of 30)  

   x  
 2 
  = Décor = customer rating of the decor (out of 30)  

   x  
 3 
  = Service = customer rating of the service (out of 30)  

   x  
 4 
  =  East = dummy variable = 1 (0) if the restaurant is east (west) of Fifth Avenue    

 Figures  1.5  and  1.6  contain plots of the data.       
 Whilst the situation described above is imaginary, the data are real ratings of 

New York City diners. The data are given on the book web site in the file nyc.csv. 
The source of the data is: 

  Zagat Survey 2001: New York City Restaurants , Zagat, New York. 
 According to   www.zagat.com,     Tim and Nina Zagat (two lawyers in New York 

City) started Zagat restaurant surveys in 1979 by asking 20 of their friends to rate 
and review restaurants in New York City. The survey was an immediate success and 
the Zagats have produced a guide to New York City restaurants each year since. In 
less than 30 years, Zagat Survey has expanded to cover restaurants in more than 85 
cities worldwide and other activities including travel, nightlife, shopping, golf, 
theater, movies and music. 

 In particular you have been asked to:

  •  Develop a regression model that  directly predicts  the price of dinner (in dollars) 
using a subset or all of the four potential predictor variables listed above.  

 •  Determine which of the predictor variables Food, Décor and Service has the 
largest estimated effect on Price? Is this effect also the most statistically 
significant?  

 •  If the aim is to choose the location of the restaurant so that the price achieved 
for dinner is maximized, should the new restaurant be on the east or west of Fifth 
Avenue?  

 •  Does it seem possible to achieve a price premium for “setting a new standard for 
high-quality service in Manhattan” for Italian restaurants?  

 •  Identify the restaurants in the data set which, given the customer ratings, are 
(i) unusually highly priced; and (ii) unusually lowly priced.    

 We shall return to this example in Chapters 5 and 6.  
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  Figure 1.5    Matrix plot of Price, Food, Décor and Service ratings       

Price

16 18 20 22 24 14 18 22

20

30

40

50

60

16

18

20

22

24

Food

Decor

10

15

20

25

20 30 40 50 60

14

18

22

10 15 20 25

Service

  Figure 1.6    Box plots of Price for the 
two levels of the dummy variable East       
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  1.2.4  Effect of Wine Critics’ Ratings on Prices 

of Bordeaux Wines 

 In this example we look at the effects two wine critics have on Bordeaux wine 
prices in the UK. The two critics are Robert Parker from the US and Clive Coates 
from the UK. Background information on each appears below: 

 The most influential critic in the world today happens to be a critic of wine. … His name 
is Robert Parker … and he has no formal training in wine. … … many people now believe 
that Robert Parker is single-handedly changing the history of wine. … He is a self-
employed consumer advocate, a crusader in a peculiarly American tradition. … Parker 
samples 10,000 wines a year. … he writes and publishes an un-illustrated journal called 
The Wine Advocate, (which) … accepts no advertising. …  The Wine Advocate  has 40,000 
subscribers (at $50 each) in every US-state and 37 foreign countries. Rarely, Parker has 
given wine a perfect score of 100 – seventy-six times out of 220,000 wines tasted. … he 
remembers every wine he has tasted over the past thirty-two years and, within a few points, 
every score he has given as well. … Even his detractors admit that he is phenomenally 
consistent – that after describing a wine once he will describe it in nearly the same way if 
he retastes it ‘blind’ (without reference to the label) …. (Langewiesche 2000)   
  Clive Coates MW (Master of Wine) is one of the world’s leading wine authorities. 
Coates’ lifetime of distinguished activity in the field has been recognised by the French 
government, which recently awarded him the Chevalier de l’Ordre du Mérite Agricole, 
and he’s also been honoured with a “Rame d’Honneur” by Le Verre et L’Assiette, the 
Ruffino/Cyril Ray Memorial Prize for his writings on Italian wine, and the title of “Wine 
Writer of the Year” for 1998/1999 in the Champagne Lanson awards. …Coates has 
published  The Vine , his independent fine wine magazine, since 1985. Prior to his career 
as an author, Coates spent twenty years as a professional wine merchant. (  http://www.
clive-coates.com/    )   

 The courtier Eric Samazeuilh puts it plainly: “… Parker is the wine writer who matters. 
Clive Coates is very serious and well respected, but in terms of commercial impact his 
influence is zero. It’s an amazing phenomenon.” …The pseudo-certainties of the 100-point 
(Parker) system have immense appeal in markets where a wine culture is either non-
existent or very new. The German wine collector Hardy Rodenstock recalls: “I know very 
rich men in Hong Kong who have caught the wine bug. …the only thing they buy are wines 
that Parker scores at ninety five or above …” …. (Brook 2001)   

 Parker (2003) and Coates (2004) each contain numerical ratings and reviews of the 
wines of Bordeaux. In this example we look at the effect of these ratings on the prices 
(in pounds sterling) on the wholesale brokers’ auction market per dozen bottles, duty 
paid but excluding delivery and VAT in London in September 2003. In particular, we 
consider the prices for 72 wines from the 2000 vintage in Bordeaux. The prices are 
taken from Coates (2004, Appendix One). The 2000 vintage has been chosen since it 
is ranked by both critics as a “great vintage.” For example, Parker (2003, pages 
30–31) claims that the 2000 vintage “produced many wines of exhilarating quality … 
at all levels of the Bordeaux hierarchy. … The finest 2000s appear to possess a stag-
gering 30–40 years of longevity.” In addition, Coates (2004, page 439) describes the 
2000 vintage as follows: “Overall it is a splendid vintage.” 

 Data are available on the ratings by Parker and Coates for each of the 72 wines. 
Robert Parker uses a 100-point rating system with wines given a whole number 
score between 50 and 100 as follows:      
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 On the other hand, Clive Coates uses a 20-point rating system with wines given 
a score between 12.5 and 20 that ends in 0 or 0.5 as follows:    

 96–100 points  Extraordinary 

 90–95 points  Outstanding 

 80–89 points  Above average to very good 

 70–79 points  Average 

 50–69 points  Below average to poor 

 20  Excellent. ‘Grand vin’  16  Very good 

 19.5  Very fine indeed  15.5  Good plus 

 19  Very fine plus  15  Good 

 18.5  Very fine  14.5  Quite good plus 

 18  Fine plus  14  Quite good 

 17.5  Fine  13.5  Not bad plus 

 17  Very good indeed  13  Not bad 

 16.5  Very good plus  12.5  Poor 

 Data are available on the following other potentially important predictor variables:

  •  P95andAbove is a dummy variable which is 1 if the wine scores 95 or above 
from Robert Parker (and 0 otherwise). This variable is included as potential 
predictor in view of the comment by Hardy Rodenstock.  

 •  FirstGrowth is a dummy variable which is 1 if the wine is a First Growth (and 0 
otherwise). First Growth is the highest classification given to a wine from 
Bordeaux. The classification system dates back to at least 1855 and it is based 
on the “selling price and vineyard condition” (Parker, 2003, page 1148). Thus, 
first-growth wines are expected to achieve higher prices than other wines.  

 •  CultWine is a dummy variable which is 1 if the wine is a cult wine (and 0 
otherwise). Cult wines (such as Le Pin) have limited availability and as such 
demand way outstrips supply. As such cult wines are among the most expensive 
wines of Bordeaux.  

 •  Pomerol is a dummy variable which is 1 if the wine is from Pomerol (and 0 
otherwise). According to Parker (2003, page 610): 

 The smallest of the great red wine districts of Bordeaux, Pomerol produces some of the 
most expensive, exhilarating, and glamorous wines in the world. …, wines are in such 
demand that they must be severely allocated.    

 •  VintageSuperstar is a dummy variable which is 1 if the wine is a vintage super-
star (and 0 otherwise). Superstar status is awarded by Robert Parker to a few 
wines in certain vintages. For example, Robert Parker (2003, page 529) describes 
the 2000 La Mission Haut-Brion as follows: 

 A superstar of the vintage, the 2000 La Mission Haut-Brion is as profound as such recent 
superstars as 1989, 1982 and 1975. … The phenomenal aftertaste goes on for more than 
a minute.      
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 In summary, data are available on the following variables:

    Y  = Price = the price (in pounds sterling) of 12 bottles of wine  
   x  

 1 
  = ParkerPoints = Robert Parker’s rating of the wine (out of 100)  

   x  
 2 
  = CoatesPoints = Clive Coates’ rating of the wine (out of 20)  

   x  
 3 
  = P95andAbove = 1 (0) if the Parker score is 95 or above (otherwise)  

   x  
 4 
  = FirstGrowth = 1 (0) if the wine is a First Growth (otherwise)  

   x  
 5 
  = CultWine = 1 (0) if the wine is a cult wine (otherwise)  

   x  
 6 
  = Pomerol = 1 (0) if the wine is from Pomerol (otherwise)  

   x  
 7 
  = VintageSuperstar = 1 (0) if the wine is a superstar (otherwise)    

 The data are given on the book web site in the file Bordeaux.csv. 
 Figure  1.7  contains a matrix plot of price, Parker’s ratings and Coates’ ratings, 

while Figure  1.8  shows box plots of Price against each of the dummy variables.       

  Figure 1.7    Matrix plot of Price, ParkerPoints and CoatesPoints       
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 In particular you have been asked to:

   1.    Develop a regression model that enables you to estimate the percentage 
effect on price of a 1% increase in ParkerPoints and a 1% increase in Coates-
Points using a subset, or all, of the seven potential predictor variables 
listed above.  

   2.    Using the regression model developed in part (1), specifically state your estimate 
of the percentage effect on price of

    (i)    A 1% increase in ParkerPoints  
   (ii)    A 1% increase in CoatesPoints      

   3.    Using the regression model developed in part (1), decide which of the predictor 
variables ParkerPoints and CoatesPoints has the largest estimated percentage 
effect on Price. Is this effect also the most statistically significant?  

   4.    Using your regression model developed in part (1), comment on the following 
claim from Eric Samazeuilh: 

 Parker is the wine writer who matters. Clive Coates is very serious and well respected, but 
in terms of commercial impact his influence is zero.    

  Figure 1.8    Box plots of Price against each of the dummy variables       
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   5.    Using your regression model developed in part (1), decide whether there is a 
statistically significant extra price premium paid for Bordeaux wines from the 
2000 vintage with a Parker score of 95 and above.  

   6.    Identify the wines in the data set which, given the values of the predictor 
variables, are:

    (i)    Unusually highly priced  
   (ii)    Unusually lowly priced         

 In Chapters 3 and 6, we shall see that a log transformation will enable us to estimate 
percentage effects. As such, Figure  1.9  contains a matrix plot of log(Price), 
log(ParkerPoints) and log(CoatesPoints), while Figure  1.10  shows box plots of 
log(Price) against each of the dummy variables. We shall return to this example 
in Chapter 6.         

  Figure 1.9    Matrix plot of log(Price), log(ParkerPoints) and log(CoatesPoints)       
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  1.3 Level of Mathematics  

 Throughout the book we will focus on understanding the properties of a number of 
regression procedures. An important component of this understanding will come 
from the mathematical properties of regression procedures. 

 The following excerpt from Chapter 5 on the properties of least squares esti-
mates demonstrates the level of mathematics associated with this book: 

 Consider the linear regression model written in matrix form as

  = b +Y X e     

with 2( )Var s=e I , where I is the (n × n) identity matrix and the (n × 1) vectors, 
Y, b, e and the n × (p + 1)matrix, X are given by
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21 2 12 2
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1

1
, , ,

1

p

p

pn nn np

x xy e

x xy e

y ex x

b

b
b

b

      
      
      = = = =
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⋯
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⋮⋮ ⋮⋮ ⋮
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  Figure 1.10    Box plots of log(Price) against each of the dummy variables       
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 The least squares estimates are given by

1ˆ ( )b −′ ′= X X X Y      

 We next derive the conditional mean of the least squares estimates:

  
( ) ( )

( )
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1

1

ˆE | E ( ) |

( ) E |

( )

b

b

b

−

−

−

= ′ ′
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   Chapter 2   

  Simple Linear Regression         

  2.1 Introduction and Least Squares Estimates  

 Regression analysis is a method for investigating the functional relationship among 
variables. In this chapter we consider problems involving modeling the relationship 
between two variables. These problems are commonly referred to as simple linear 
regression or straight-line regression. In later chapters we shall consider problems 
involving modeling the relationship between three or more variables. 

 In particular we next consider problems involving modeling the relationship between 
two variables as a straight line, that is, when  Y  is modeled as a linear function of  X . 

  Example: A regression model for the timing of production runs  
 We shall consider the following example taken from Foster, Stine and Waterman 
(1997, pages 191–199) throughout this chapter. The original data are in the form of 
the time taken (in minutes) for a production run,  Y , and the number of items pro-
duced,  X , for 20 randomly selected orders as supervised by three managers. At this 
stage we shall only consider the data for one of the managers (see Table  2.1  and 
Figure  2.1 ). We wish to develop an equation to model the relationship between  Y , 
the run time, and  X , the run size.      

 A scatter plot of the data like that given in Figure  2.1  should  ALWAYS  be drawn 
to obtain an idea of the sort of relationship that exists between two variables (e.g., 
linear, quadratic, exponential, etc.). 

  2.1.1 Simple Linear Regression Models 

 When data are collected in pairs the standard notation used to designate this is:

  (x
1
, y

1
),(x

2
, y

2
), . . . ,(x

n
, y

n
)   

 where  x  
1
  denotes the first value of the so-called  X -variable and  y  

1
  denotes the first 

value of the so-called  Y -variable.  The  X -variable is called the  explanatory  or  pre-

dictor variable , while the  Y -variable is called the  response variable  or the 
 dependent variable .  The  X -variable often has a different status to the  Y -variable 
in that: 

S.J. Sheather, A Modern Approach to Regression with R, 15
DOI: 10.1007/978-0-387-09608-7_2, © Springer Science + Business Media LLC 2009
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   •  It can be thought of as a potential predictor of the  Y -variable  
 •  Its value can sometimes be chosen by the person undertaking the study    

 Simple linear regression is typically used to model the relationship between two 
variables  Y  and  X  so that given a specific value of  X , that is,  X  =  x , we can predict 
the value of  Y . Mathematically, the regression of a random variable  Y  on a random 
variable  X  is

  E(Y | X = x),   

 the expected value of  Y  when  X  takes the specific value  x . For example, if  X  = Day 
of the week and  Y  = Sales at a given company, then the regression of  Y  on  X  repre-
sents the mean (or average) sales on a given day. 

 The regression of  Y  on  X  is linear if
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  Figure 2.1    A scatter plot of the production data       

 Table 2.1    Production data (production.txt)  

 Case  Run time  Run size  Case  Run time  Run size 

  1  195  175  11  220  337 

  2  215  189  12  168  58 

  3  243  344  13  207  146 

  4  162  88  14  225  277 

  5  185  114  15  169  123 

  6  231  338  16  215  227 

  7  234  271  17  147  63 

  8  166  173  18  230  337 

  9  253  284  19  208  146 

 10  196  277  20  172  68 
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 b b= = +0 1E( | )Y X x x  
  (2.1)     

 where the unknown parameters   b0   and   b1   determine the intercept and the slope of a 
specific straight line, respectively. Suppose that  Y  

1
 ,  Y  

2
 , …,  Y  

 n 
  are independent reali-

zations of the random variable  Y  that are observed at the values  x  
1
 ,  x  

2
 , …,  x  

 n 
  of a 

random variable  X . If the regression of  Y  on  X  is linear, then for  i  = 1, 2, …,  n 

b b= = + = + +0 1E( | )
i i i

Y Y X x e x e      

 where  e  
 i 
  is the random error in  Y  

 i 
  and is such that   E(e | X) = 0.   

 The random error term is there since there will almost certainly be some varia-
tion in  Y  due strictly to random phenomenon that cannot be predicted or explained. 
In other words, all unexplained variation is called  random error . Thus, the random 
error term does not depend on  x , nor does it contain any information about  Y  (oth-
erwise it would be a systematic error). 

 We shall begin by assuming that

 s= = 2V ( | .ar )Y X x    (2.2)     

 In Chapter 4 we shall see how this last assumption can be relaxed. 

  Estimating the population slope and intercept  

 Suppose for example that  X  = height and  Y  = weight of a randomly selected individual 
from some population, then for a straight line regression model the mean weight of 
individuals of a given height would be a linear function of that height. In practice, we 
usually have a sample of data instead of the whole population. The slope   b1   and inter-
cept   b0   are unknown, since these are the values for the whole population. Thus, we 
wish to use the given data to estimate the slope and the intercept. This can be achieved 
by finding the equation of the line which “best” fits our data, that is, choose  b  

0
  and  b  

1
  

such that 0 1
ˆ

i i
y b b x= +      is as “close” as possible to   y

i
  . Here the notation   ŷ

i
   is used to 

denote the value of the line of best fit in order to distinguish it from the observed values 
of  y , that is,   y

i
  . We shall refer to   ŷ

i
   as the  i th  predicted value  or the  fitted value  of  y  

 i 
 . 

  Residuals  

 In practice, we wish to minimize the difference between the actual value of  y  ( y  
i
 ) 

and the predicted value of  y  (  ŷ
i
  ). This difference is called the residual,   ê 

i
  , that is, 

  ê
i
 = y

i
– ŷ

i
   .

 Figure  2.2  shows a hypothetical situation based on six data points. Marked on this 
plot is a  line of best fit ,   ŷ

i
   along with the residuals.  

  Least squares line of best fit  

 A very popular method of choosing  b  
0
  and  b  

1
  is called the method of least squares. 

As the name suggests  b  
0
  and  b  

1
  are chosen to minimize the sum of squared residuals 

(or residual sum of squares [RSS]),
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2 2 2
0 1

1 1 1

ˆ ˆRSS ( ) ( ) .
n n n

i i i i i

i i i

e y y y b b x
= = =

= = − = − −∑ ∑ ∑

      For RSS to be a minimum with respect to  b  
0
  and  b  

1
  we require

0 1
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RSS
2 ( ) 0

n

i i

i

y b b x
b =

= − − − =∑∂
∂      

 and

  0 1
11

RSS
2 ( ) 0

n

i i i

i

x y b b x
b =

= − − − =∑∂
∂    

 Rearranging terms in these last two equations gives  

  
0 1

1 1

n n

i i

i i

y b n b x
= =

= +∑ ∑   

and

  

2
0 1

1 1 1

.
n n n

i i i i

i i i

x y b x b x
= = =

= +∑ ∑ ∑
   

 These last two equations are called the  normal equations . Solving these equations 
for  b  

0
  and  b  

1
  gives the so-called  least squares estimates  of the intercept

 0 1
ˆ ˆy xb b= −    (2.3)     
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  Figure 2.2    A scatter plot of data with a line of best fit and the residuals identified       
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 and the slope

 

1 1
1

2 2 2

1 1
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ˆ .
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i i

n n

i i

i i

x y nxy x x y y
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= =

− − −
= = =

− −

∑ ∑

∑ ∑
   

(2.4)     

  Regression Output from R  

The least squares estimates for the production data were calculated using R, giving 
the following results:

 Coefficients:   

  Estimate Std. Error t value Pr(>|t|)   

 (Intercept) 149.74770 8.32815 17.98 6.00e-13 ***   

 RunSize 0.25924 0.03714 6.98 1.61e-06 ***   

 ---   

 Signif. codes:0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1        

 Residual standard error: 16.25 on 18 degrees of freedom   

 Multiple R-Squared: 0.7302, Adjusted R-squared: 0.7152   

 F-statistic: 48.72 on 1 and 18 DF, p-value: 1.615e-06   

  The least squares line of best fit for the production data  

 Figure  2.3  shows a scatter plot of the production data with the least squares line of 
best fit. The equation of the least squares line of best fit is

  149.7 0.26 .y x= +     

 Let us look at the results that we have obtained from the line of best fit in Figure 
 2.3 . The intercept in Figure  2.3  is 149.7, which is where the line of best fit crosses 
the run time axis. The slope of the line in Figure  2.3  is 0.26. Thus, we say that each 
additional unit to be produced is predicted to add 0.26 minutes to the run time. The 
intercept in the model has the following interpretation: for any production run, the 
average set up time is 149.7 minutes. 

  Estimating the variance of the random error term  

 Consider the linear regression model with constant variance given by (2.1) and 
(2.2). In this case,

  
0 1 ( 1,2,..., )

i i i
Y x e i nb b= + + =    

 where the random error  e  
 i 
  has mean 0 and variance   s2  . We wish to estimate 

  s2 = Var(e)  . Notice that

  0 1( )
iii i

e x YY b b− + == – unknown regression line at x
i
.   
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 Since b0     and   b1   are unknown all we can do is estimate these errors by replacing   b0 
  and   b1   by their respective least squares estimates   b̂0   and   b̂1   giving the residuals

  b b= − + = −0 1
ˆ ˆˆ ( ) estimated regression line at .

i i i i i
e Y x Y x    

 These residuals can be used to estimate   s 2  . In fact it can be shown that

  
2 2

1

RSS 1
ˆ

2 2

n

i

i

S e
n n =

= =
− − ∑    

 is an unbiased estimate of   s 2  . 
 Two points to note are: 

    1.      ̂ 0e =    (since   ˆ 0
i

e =∑    as the least squares estimates minimize   2ˆRSS
i

e= ∑    )  
   2.    The divisor in   S2   is   n – 2   since we have estimated two parameters, namely 

  b0   and   b1  .      

  2.2 Inferences About the Slope and the Intercept 

 In this section, we shall develop methods for finding confidence intervals 
and for performing hypothesis tests about the slope and the intercept of the 
regression line. 
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  Figure 2.3    A plot of the production data with the least squares line of best fit       
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  2.2.1  Assumptions Necessary in Order to Make Inferences 

About the Regression Model 

 Throughout this section we shall make the following assumptions: 

    1.     Y  is related to  x  by the simple linear regression model
  0 1 ( 1,..., )

i i i
Y x e i nb b= + + =   , i.e.,   b b= = +0 1E( | )

i i
Y X x x     

   2.    The errors   1 2, ,...,
n

e e e    are independent of each other  
   3.    The errors   1 2, ,...,

n
e e e    have a common variance   s 2    

   4.    The errors are normally distributed with a mean of 0 and variance   s 2  , that is, 
  2|  (~ 0, )e X N s        

 Methods for checking these four assumptions will be considered in Chapter 3. In 
addition, since the regression model is conditional on  X  we can assume that the 
values of the predictor variable,  x  

1
 ,  x  

2
 , …,  x  

 n 
  are known fixed constants.   

  2.2.2 Inferences About the Slope of the Regression Line 

 Recall from (2.4) that the least squares estimate of   b1   is given by 
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1
2 2 2

1 1

( )( )
ˆ

( )

n n
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∑ ∑

    

 Since,   
1

( ) 0
n

i

i

x x
=

− =∑    we find that

  1 1 1 1

( )( ) ( ) ( ) ( )
n n n n

i i i i i i i

i i i i

x x y y x x y y x x x x y
= = = =

− − = − − − = −∑ ∑ ∑ ∑
   

 Thus, we can rewrite   b̂
1
   as 

 1
1

whereˆ   
n

i

i i i

i

x x
c y c

SXX
b

=

−
= =∑    (2.5)     

 We shall see that this version of   b̂
1
   will be used whenever we study its theoretical 

properties. 
 Under the above assumptions, we shall show in Section  2.7  that 

 b b=1 1
ˆE( | )X    (2.6)    

 

s
b =

2

1
ˆVar( | )X

SXX    
(2.7)    
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s
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⎛ ⎞
⎜ ⎟⎝ ⎠

2

1 1
ˆ |  ~ ,X N

SXX    
(2.8)     

 Note that in (2.7) the variance of the least squares slope estimate decreases as  SXX  
increases (i.e., as the variability in the  X ’s increases). This is an important fact to note 
if the experimenter has control over the choice of the values of the  X  variable. 

 Standardizing (2.8) gives 

1 1
ˆ

~ (0,1)Z N

SXX

b b

s

−
=      

 If   s   were known then we could use a  Z  to test hypotheses and find confidence 
intervals for   b  

1
. When   s   is unknown (as is usually the case) replacing   s   by  S , the 

standard deviation of the residuals results in 

b b b b

b

− −
= =1 1 1 1

1

ˆ ˆ

ˆse ( )
T

S
SXX      

 where se  1
ˆ( ) S

SXX
b =    is the estimated standard error (se) of   b̂

1
  , which is given 

directly by R. In the production example the  X -variable is  RunSize  and so 
se  (b̂

1
) = 0.03714  . 

 It can be shown that under the above assumptions that  T  has a  t -distribution with 
 n  – 2 degrees of freedom, that is

  

1 1
2

1

ˆ

ˆse( )
~

n
T t

b b

b
−

−
=

   

 Notice that the degrees of freedom satisfies the following formula 

degrees of freedom = sample size – number of mean parameters estimated.

 In this case we are estimating two such parameters, namely,   b0   and   b1  . 
 For  testing the hypothesis    b b= 0

0 1 1:H     the test statistic is 

  

0
1 1

2 0

1

ˆ
 when is true.

s
~

ˆe( )
n

T t H
b b

b
−

−
=

   

 R provides the value of  T  and the  p -value associated with testing   H
0 
: b

1
 = 0   against 

  1: 0
A

H b ≠    (i.e., for the choice   0
1 0b =   ). In the production example the  X -variable is 

 RunSize  and  T  = 6.98, which results in a  p -value less than 0.0001. 
 A   100(1–a)  %  confidence interval  for   b1  , the slope of the regression line, is 

given by 
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  1 1 1 1
ˆ ˆ ˆ ˆ( ( /2, 2)se ( ), ( 2, 2)se ( ))t n t nb a - b b a / - b− +

   

 where   t(a /   2, n – 2) is the   100(1– a /   2)th quantile of the  t -distribution with  n  – 2 
degrees of freedom. 

 In the production example the  X -variable is  RunSize  and   1 1
ˆ ˆ0.25924, se( )b b= =

  0.03714, t (0.025, 20–2 = 18) = 2.1009. Thus a 95%  confidence interval for   b1   is given by 

  (0.25924 2.1009 0.03714) (0.25924 0.07803) (0.181,0.337)± × = ± =     

  2.2.3 Inferences About the Intercept of the Regression Line 

 Recall from (2.3) that the least squares estimate of   b0   is given by

   0 1
ˆ ˆy xb b= −    

 Under the assumptions given previously we shall show in Section  2.7  that 

 0
ˆE( | )

0
Xb b=

   (2.9)    

 

2
2

0

1ˆVar( | )
x

X
n SXX

b s
⎛ ⎞

= +⎜ ⎟⎝ ⎠    
(2.10)    

 

2
2

0 0~
1ˆ |  ,

x
X N

n SXX
b b s

⎛ ⎞⎛ ⎞
+⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠    

(2.11)     

 Standardizing (2.11) gives 

  

0 0

2

ˆ
(0,1)

1
Z N

x
n SXX

b b
~

s

−
=

+
   

 If   s   were known then we could use  Z  to test hypotheses and find confidence inter-
vals for   b0  . When   s   is unknown (as is usually the case) replacing σ by S results in 

  

0 0 0 0
22

0

ˆ ˆ
~

ˆse( )1
n

T t
xS

n SXX

b b b b

b
−

− −
= =

+
   

 where se  
2

0
ˆ 1( ) xS

n SXX
b = +    is the estimated standard error of   b̂

0
  , which is 

given directly by R. In the production example the intercept is called  Intercept  and 
so   se(b̂

0
) = 8.32815  . 
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 For  testing the hypothesis    0
0 0 0:H b b=    the test statistic is 

  

0
0 0

2 0

0

ˆ
 when is t~ rue.

ˆse( )
 

n
T t H

b b

b
−

−
=

   

 R provides the value of  T  and the  p -value associated with testing   0 0: 0H b =    
against        0: 0

A
H b �   . In the production example the intercept is called  Intercept  and 

  T = 17.98   which results in a  p -value < 0.0001. 
 A   100(1 – a )%    confidence interval  for   b

0
  , the intercept of the regression line, 

is given by 

  0 0 0 0
ˆ ˆ ˆ ˆ( ( 2, 2) se( ), ( /2 , 2)se( ))t n – t n –b a / b b a b− +    

 where   t(a / 2,n – 2)   is the   100(1–a / 2)  th quantile of the  t -distribution with  n  – 2 
degrees of freedom. 

 In the production example, 

  0 0
ˆ ˆ149.7477, se( ) 8.32815, (0.025,20 2 18) 2.1009tb b= = − = =   .

Thus a 95% confidence interval for   b
0
   is given by 

  (149.7477 2.1009 8.32815) (149.748 17.497) (132.3,167.2)± × = ± =    

  Regression Output from R: 95% confidence intervals 

      2.5% 97.5%   

 (Intercept) 132.251 167.244   

 RunSize 0.181   0.337     

  2.3 Confidence Intervals for the Population Regression Line  

 In this section we consider the problem of finding a confidence interval for the 
unknown population regression line at a given value of  X , which we shall denote by  x *. 
First, recall from (2.1) that the population regression line at  X  =  x * is given by 

  0 1E( | *) *Y X x xb b= = +    

 An estimator of this unknown quantity is the value of the estimated regression 
equation at  X  =  x *, namely, 

  0 1
ˆ ˆˆ* *y xb b= +    

 Under the assumptions stated previously, it can be shown that 

 0 1
ˆ ˆE( *) E( | *) *y y X x xb b= = = +      (2.12)  
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2
2 1 ( * )

ˆ ˆVar( *) Var( | *)
x x

y y X x
n SXX

s
⎛ ⎞−

= = = +⎜ ⎟⎝ ⎠    

(2.13)  

 

2
2

0 1

1 ( * )
ˆ ˆ* | *  *,

x x
y y X x N x

n SXX
b b s

⎛ ⎞⎛ ⎞−
= = + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∼
   

(2.14)   

 Standardizing (2.14) gives 

  
0 1

2

ˆ * ( *)
 (0,1)

1 ( * )
( )

y x
Z N

x x

n SXX

b b

s

− +
=

−
+

∼    

 Replacing s by  S  results in 

0 1
22

ˆ * ( *)
 

1 ( * )
( )

n

y x
T t

x x
S

n SXX

b b
−∼

− +
=

−
+

     

 A   100(1 – a)%    confidence interval  for 0 1E( | *) *Y X x xb b= = + , the popula-
tion regression line at  X  =  x *, is given by 

  

0

2

2

1

1 ( * )
ˆ * ( 2, 2) ( )

1 ( * )ˆ ˆ * ( 2, 2) ( )

x x
y t n S

n SXX

x x
x t n S

n SXX

a/

b b a/

−
± − +

−
= + ± − +

    

where   ( 2, 2)t na/ −   is the 100(1–a/2)th quantile of the  t -distribution with  n  – 2 
degrees of freedom.  

  2.4 Prediction Intervals for the Actual Value of  Y   

 In this section we consider the problem of finding a prediction interval for the 
actual value of  Y  at  x *, a given value of  X . 

  Important Notes:  

    1.      E( | *)Y X x=   , the expected value or average value of  Y  for a given value  x * of 
 X , is what one would expect  Y  to be in the long run when  X  =  x *.   E( | *)Y X x=    
is therefore a fixed but unknown quantity whereas  Y  can take a number of values 
when  X  =  x *.  
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   2.     E(Y  |  X = x*), the value of the regression line at  X  =  x *, is entirely different from 
 Y *, a single value of  Y  when  X  =  x *. In particular,  Y * need not lie on the popula-
tion regression line.  

   3.    A  confidence interval  is always reported for a  parameter  (e.g.,   E(Y | X = x*)
= b

0
 + b

1
x*  ) and a  prediction interval  is reported for the value of a  random 

variable  (e.g.,  Y *).     

 We base our prediction of  Y  when  X  =  x * (that is of  Y *) on 

  0 1
ˆ ˆˆ* *y xb b= +    

 The error in our prediction is 

  0 1
ˆ ˆ ˆ* * * * * E( | *) * *Y y x e y Y X x y eb b− = + + − = = − +    

 that is, the deviation between E(Y  |  X = x*) and ŷ* plus the random fluctuation 
  e*   (which represents the deviation of  Y * from E(Y | X = x*)). Thus the variability 
in the error for predicting a single value of  Y  will exceed the variability for estimating 
the expected value of  Y  (because of the random error  e *). 

 It can be shown that under the previously stated assumptions that 

 ˆ ˆE( * *) E( | *) 0Y y Y y X x− = − = =    (2.15)  

   

2
2 1 ( * )

ˆ ˆVar( * *) Var( | *) 1
x x

Y y Y y X x
n SXX

s
⎡ ⎤−

− = − = = + +⎢ ⎥
⎣ ⎦    

(2.16)  

   

2
2 1 ( * )

ˆ* *  0, 1
x x

Y y N
n SXX

s~
⎛ ⎞⎡ ⎤−

− + +⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦
   (2.17)   

 Standardizing (2.17) and replacing s by  S  gives 

  
22

ˆ* *
 

1 ( * )
(1 )

n

Y y
T t

x x
S

n SXX

~ −

−
=

−
+ +

   

 A   100(1–a)%    prediction interval  for  Y *, the value of  Y  at  X  =  x *, is given by 

  

2

2

0 1

1 ( * )
ˆ * ( 2, 2) (1 )

1 ( * )ˆ ˆ * ( 2, 2) (1 )

x x
y t n S

n SXX

x x
x t n S

n SXX

a/

b b a/

−
± − + +

−
= + ± − + +
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where t(a / 2,n–2) is the 100(1–a / 2)th quantile of the  t -distribution with  n  – 2 
degrees of freedom. 

  Regression Output from R  

 Ninety-five percent confidence intervals for the population regression line (i.e., the 
average  RunTime)  at  RunSize  = 50, 100, 150, 200, 250, 300, 350 are: 

  fit lwr upr   

  1 162.7099 148.6204 176.7994   

  2 175.6720 164.6568 186.6872   

  3 188.6342 179.9969 197.2714   

  4 201.5963 193.9600 209.2326   

  5 214.5585 206.0455 223.0714   

  6 227.5206 216.7006 238.3407   

  7 240.4828 226.6220 254.3435   

 Ninety-five percent prediction intervals for the actual value of  Y  (i.e., the actual 
 RunTime)  at at  RunSize  = 50, 100, 150, 200, 250, 300, 350 are: 

  fit lwr upr   

  1 162.7099 125.7720 199.6478   

  2 175.6720 139.7940 211.5500   

 3 188.6342 153.4135 223.8548   

 4 201.5963 166.6076 236.5850   

 5 214.5585 179.3681 249.7489   

 6 227.5206 191.7021 263.3392   

 7 240.4828 203.6315 277.3340   

 Notice that each prediction interval is considerably wider than the corresponding 
confidence interval, as is expected.  

  2.5 Analysis of Variance  

 There is a linear association between  Y  and  x  if 

  Y = b
0
 + b

1
x + e   

 and b
1  
  ≠ 0. If we knew that   b

1
≠ 0   then we would predict  Y  by 

  0 1
ˆ ˆŷ xb b= +

   

On the other hand, if we knew that b
1 
= 0 then we predict Y by

  ŷ y=   

 To test whether there is a linear association between  Y  and  X  we have to test 

0 1: 0H b =      against   
1: 0

A
H b ≠    .
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 We can perform this test using the following  t -statistic 

  

b

b
−

−
∼= 1

2

1

ˆ 0
 

ˆse( )
n

T t
   
when H

0
 is true.

 

 We next look at a different test statistic which can be used when there is more than 
one predictor variable, that is, in multiple regression. First, we introduce some 
terminology. 

 Define the total corrected sum of squares of the  Y ’s by 

  
2SST ( )

n

i

i

SYY y y= = −∑    

 Recall that the residual sum of squares is given by 

  2ˆRSS ( )
n

i i

i

y y= −∑    

 Define the regression sum of squares (i.e., sum of squares explained by the regres-
sion model) by 

  2ˆSSreg ( )
n

i

i

y y= −∑    

 It is clear that SSreg is close to zero if for each  i,  ŷ
i 
is close to ȳ while SSreg is large 

if ŷ
i
 differs from ȳ for most values of  x . 

 We next look at the hypothetical situation in Figure  2.4  with just a single 
data point ( x  

 i 
 ,  y  

 i 
 ) shown along with the least squares regression line and the 

mean of  y  based on all  n  data points. It is apparent from Figure  2.4  that 
  ( ) ( )ˆ ˆ .

i i i i
y y y y y y− = − + −     
 Further, it can be shown that 

SST = SSreg + RSS
Total sample = Variability explained by + Unexplained (or error)
variability the model variability     

 See exercise 6 in Section  2.7  for details. 
 If 

  0 1Y x eb b= + +    and   b
1 
≠ 0   

 then RSS should be “small” and SSreg should be “close” to SST. But how small is 
“small” and how close is “close”? 
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 To test 

  H
0
 : b

1 
= 0   against   H

A
 : b

1 
≠ 0   

 we can use the test statistic 

  
SSreg /1

RSS / 2
 

 
 

( )
F

n
=

−
   

 since RSS has ( n  – 2) degrees of freedom and SSreg has 1 degree of freedom. 
 Under the assumption that   e

1
 , e

2
 ,..., e

n
   are independent and normally distributed 

with mean 0 and variance   s2  , it can be shown that  F  has an  F  distribution with 1 
and  n  – 2 degrees of freedom when   H

0
   is true, that is,

  
1 2

 

SSreg /1

RSS /(
 

2)
,n–

FF
n

~=
−

   when   H
0
   is true 

 Form of test: reject   H
0
    at level a if ,1, 2n

F Fa −>     (which can be obtained from table 
of the  F  distribution). However, all statistical packages report the corresponding 
 p -value. 

  Figure 2.4    Graphical depiction that   ( ) ( )− = − + −ˆ ˆ
i i i i

y y y y y y          
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   Notes: 

    1.    It can be shown that in the case of simple linear regression 1
2

1

ˆ 0
~

ˆse( )
n

tT
b

b
−

− 
=

    and   1 2
 

SSreg /1

RSS /(
 

2)
,n–

FF
n

~=
−

   are related via   F = T  2    

   2.      R2  , the coefficient of determination of the regression line, is defined as the pro-
portion of the total sample variability in the  Y ’s explained by the regression 
model, that is,

  

2 SSreg RSS
1

SST SST
R = = −

       

  The reason this quantity is called   R2   is that it is equal to the square of the correlation 
between  Y  and  X . It is arguably one of the most commonly misused statistics. 

  Regression Output from R  

 Analysis of Variance Table        
 Response: RunTime   

  Df Sum Sq Mean Sq F value Pr(>F)   

 RunSize   1 12868.4 12868.4 48.717 1.615e-06 ***   

 Residuals 18 4754.6 264.1   

 ---   

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1   

 Notice that the observed  F -value of 48.717 is just the square of the observed  t -value 
6.98 which can be found between Figures 2.2 and 2.3. We shall see in Chapter 5 
that Analysis of Variance overcomes the problems associated with multiple  t -tests 
which occur when there are many predictor variables.  

  2.6 Dummy Variable Regression  

 So far we have only considered situations in which the predictor or  X -variable is 
quantitative (i.e., takes numerical values). We next consider so-called  dummy vari-

able regression , which is used in its simplest form when a predictor is categorical 

 Source of 
variation 

 Degrees of 
freedom (df) 

 Sum of squares 
(SS) 

 Mean square 
(MS) 

 F 

 Regression  1  SSreg  SSreg/1 

   

SSreg /1

RSS / 2
 

 
 

( )
F

n
=

−   

 Residual   n   – 2  RSS  RSS/( n  – 2)   

 Total   n   – 1  SST     

 The usual way of setting out this test is to use an   Analysis of variance table  
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with two values (e.g., gender) rather than quantitative. The resulting regression 
models allow us to test for the difference between the means of two groups. We 
shall see in a later topic that the concept of a dummy variable can be extended to 
include problems involving more than two groups. 

  Using dummy variable regression to compare new and old methods  

 We shall consider the following example throughout this section. It is taken from 
Foster, Stine and Waterman (1997, pages 142–148). In this example, we consider 
a large food processing center that needs to be able to switch from one type of 
package to another quickly to react to changes in order patterns. Consultants have 
developed a new method for changing the production line and used it to produce 
a sample of 48 change-over times (in minutes). Also available is an independent 
sample of 72 change-over times (in minutes) for the existing method. These two 
sets of times can be found on book web site in the file called changeover_times.
txt. The first three and the last three rows of the data from this file are reproduced 
below in Table  2.2 . Plots of the data appear in Figure  2.5 .      

 We wish to develop an equation to model the relationship between  Y , the 
change-over time and  X , the dummy variable corresponding to New and hence test 
whether the mean change-over time is reduced using the new method. 

 We consider the simple linear regression model 

  0 1Y x eb b= + +    

 where  Y  = change-over time and  x  is the dummy variable (i.e.,  x  = 1 if the time corre-
sponds to the new change-over method and 0 if it corresponds to the existing method). 

  Regression Output from R  

 Coefficients:   

  Estimate Std. Error t value Pr(>|t|)   

 (Intercept) 17.8611 0.8905  20.058 <2e-16 ***   

 New -3.1736 1.4080 -2.254 0.0260 *   

 ---   

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1        

 Residual standard error: 7.556 on 118 degrees of freedom   

 Multiple R-Squared: 0.04128, Adjusted R-squared: 0.03315   

 F-statistic: 5.081 on 1 and 118 DF, p-value: 0.02604   

 We can test whether there is significant reduction in the change-over time for the 
new method by testing the significance of the dummy variable, that is, we wish to 
test whether the coefficient of  x  is zero or less than zero, that is: 

  0 1: 0H b =    against   1: 0
A

H b <    

 We use the one-sided “<” alternative since we are interested in whether the new 
method has lead to a reduction in mean change-over time. The test statistic is 

  1
2 0

1

~
ˆ 0

 when is true 
)

 .
ˆse(

n
T t H

b

b
−

−
=    
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 In this case, 

T = –2.254.

 (This result can be found in the output in the column headed ‘ t  value’). The associ-
ated  p -value is given by 

  
0

0.026
( 2.254 when is true) = 0.013

2
p value P T H− = < − =    

 as the two-sided   0- ( 2.254 when is true) 0.026.p value P T H= ≠ − =    
 This means that there is significant evidence of a reduction in the mean change-

over time for the new method. 

  Figure 2.5    A scatter plot and box plots of the change-over time data       
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 Table 2.2    Change-over time data (changeover_times.txt)  

 Method   Y , Change-over time   X , New 

 Existing  19  0 

 Existing  24  0 

 Existing  39  0 

 .  .  . 

 New  14  1 

 New  40  1 

 New  35  1 
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 Next consider the group consisting of those times associated with the  new 

change-over method . For this group, the dummy variable,  x  is equal to 1. Thus, we 
can estimate the mean change-over time for the new method as: 

  17.8611 ( 3.1736) 1 14.6875 14.7 minutes+ − × = =    

 Next consider the group consisting of those times associated with the  existing 

change-over method . For this group, the dummy variable,  x  is equal to 0. Thus, we 
can estimate the mean change-over time for the new method as: 

17.8611 + (–3.1736) × 0 = 17.8611 = 17.9 minutes     

 The new change-over method produces a reduction in the mean change-over time 
of 3.2 min from 17.9 to 14.7 minutes (Notice that the reduction in the mean change-
over time for the new method is just the coefficient of the dummy variable.) This 
reduction is  statistically significant . 

 A 95% confidence interval for the reduction in mean change-over time due to 
the new method is given by 

  1
ˆ ˆ ˆ ˆ( ( /2, 2)se( ), ( /2, 2)se ( ))t n t n1 1 1b a b b a b− − + −    

 where   ( /2, 2)t na −    is the   100(1 2)a /−   th quantile of the  t -distribution with  n  – 2 
degrees of freedom. In this example the  X -variable is the dummy variable 
 New  and   

1 13.1736, se( ) 1.4080, (0.025,120 2ˆ 118) 1. 803ˆ 9tb b= − = − = =   . Thus a 
95% confidence interval for   b

1
   (in minutes) is given by 

− ±1.9803 ×1.4080) = (−3.1736 ± = − −( 3.1736 2.7883) ( 5.96, 0.39).  

 Finally, the company should adopt the new method if a reduction of time of this size 
is of  practical significance .  

  2.7 Derivations of Results  

 In this section, we shall derive some results given earlier about the least squares 
estimates of the slope and the intercept as well as results about confidence intervals 
and prediction intervals. 

 Throughout this section we shall make the following assumptions: 

    1.     Y  is related to  x  by the simple linear regression model 
  

0 1 0 1( 1,..., ), . .,E( | )
i i i i i

Y x e i n i e Y X x xb b b b= + + = = = +         

   2.    The errors   e
1
,e

2
,...,e

n
   are independent of each other  

   3.    The errors   e
1
,e

2
,...,e

n
   have a common variance   s2    

   4.    The errors are normally distributed with a mean of 0 and variance   s2  (especially 
when the sample size is small), that is,   2| (~ 0, )e X N s        
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 In addition, since the regression model is conditional on  X  we can assume that the 
values of the predictor variable,  x  

 1 
 ,  x  

 2 
 , …,  x  

 n 
  are known fixed constants. 

  2.7.1 Inferences about the Slope of the Regression Line 

 Recall from (2.5) that the least squares estimate of   b
1
   is given by 

  1
1

ˆ where  .
n

i

i i i

i

x x
c y c

SXX
b

=

−
= =∑    

 Under the above assumptions we shall derive (2.6), (2.7) and (2.8). 
 To derive (2.6) let’s consider 
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 Finally we derive (2.8). Under assumption (4), the errors  e  
 i 
  |  X  are normally distrib-

uted. Since   0 1 ( 1,2,..., )
i i i

y x e i nb b= + + =   ,  Y  
 i 
   |  X  is normally distributed. Since 

  1
ˆ | Xb    is a linear combination of the  y  

 i 
 ’s,   

1
ˆ | Xb    is normally distributed.  

  2.7.2 Inferences about the Intercept of the Regression Line 

 Recall from (2.3) that the least squares estimate of   b
0
   is given by 

  0 1
ˆ ˆ .y xb b= −    

 Under the assumptions given previously we shall derive (2.9), (2.10) and (2.11). To 
derive (2.9) we shall use the fact that
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 The second piece of that equation is 

  1 1
ˆE( | ) .X x xb b=    

 Thus,
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 From (2.7),
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 Result (2.11) follows from the fact that under assumption (4),  Y  
 i 
   |   X  (and hence   ̄y  ) 

are normally distributed as is   1
ˆ | Xb   .  

  2.7.3 Confidence Intervals for the Population Regression Line 

 Recall that the population regression line at  X  =  x * is given by 

  0 1E( | *) *Y X x xb b= = +    

 An estimator the population regression line at  X  =  x * (i.e.,   0 1E( | *) *Y X x xb b= = +   ) 
is the value of the estimated regression equation at  X  =  x *, namely,

  
0 1

ˆ ˆˆ* *y xb b= +    

 Under the assumptions stated previously, we shall derive (2.12), (2.13) and (2.14). 
First, notice that (2.12) follows from the following earlier established results 
  0 0

ˆE( | *)X xb b= =    and   
1 1

ˆE( | *)X xb b= =   . 
 Next, consider (2.13)
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 So that,
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 Result (2.14) follows from the fact that under assumption (4),   0
ˆ | Xb    is normally 

distributed as is       
1

ˆ | Xb .

  2.7.4 Prediction Intervals for the Actual Value of  Y  

 We base our prediction of  Y  when  X  =  x * (that is of  Y *) on

  
0 1

ˆ ˆˆ* *y xb b= +    

 The error in our prediction is

  0 1
ˆ ˆ ˆ* * * * * E( | *) * *Y y x e y Y X x y eb b− = + + − = = − +    

 that is, the deviation between   E( | *)Y X x=    and   ŷ*   plus the random fluctuation   e*   
(which represents the deviation of  Y * from   E( | *)Y X x=   ). 

 Under the assumptions stated previously, we shall derive (2.15), (2.16) and 
(2.17). First, we consider (2.15)
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 In considering (2.16), notice that   ŷ   is independent of  Y *, a future value of  Y . 
Thus,
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 Finally, (2.17) follows since both   ŷ   and  Y * are normally distributed.   
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  2.8 Exercises  

    1.     The web site www.playbill.com provides weekly reports on the box office 
ticket sales for plays on Broadway in New York. We shall consider the data 
for the week October 11–17, 2004 (referred to below as the current week). 
The data are in the form of the gross box office results for the current week 
and the gross box office results for the previous week (i.e., October 3–10, 
2004). The data, plotted in Figure  2.6 , are available on the book web site in 
the file playbill.csv.  

 Fit the following model to the data:   0 1Y x eb b= + +    where  Y  is the gross box 
office results for the current week (in $) and  x  is the gross box office results for the 
previous week (in $). Complete the following tasks:

   (a)    Find a 95% confidence interval for the slope of the regression model,   b1  . Is 
1 a plausible value for   b1  ? Give a reason to support your answer.  

   (b)    Test the null hypothesis   0 0: 10000H b =    against a two-sided alternative. 
Interpret your result.  

   (c)    Use the fitted regression model to estimate the gross box office results for 
the current week (in $) for a production with $400,000 in gross box office 
the  previous week. Find a 95% prediction interval for the gross box office 

  Figure 2.6    Scatter plot of gross box office results from Broadway       
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results for the current week (in $) for a production with $400,000 in gross 
box office the previous week. Is $450,000 a feasible value for the gross box 
office results in the current week, for a production with $400,000 in gross 
box office the previous week? Give a reason to support your answer.  

   (d)    Some promoters of Broadway plays use the prediction rule that next week’s 
gross box office results will be equal to this week’s gross box office results. 
Comment on the appropriateness of this rule.      

   2.    A story by James R. Hagerty entitled  With Buyers Sidelined, Home Prices Slide  
published in the Thursday October 25, 2007 edition of the  Wall Street Journal  
contained data on so-called fundamental housing indicators in major real estate 
markets across the US. The author argues that…  prices are generally falling and 

overdue loan payments are piling up . Thus, we shall consider data presented in 
the article on

     Y  =  Percentage change in average price from July 2006 to July 2007 (based on 
the S&P/Case-Shiller national housing index); and  

    x  =  Percentage of mortgage loans 30 days or more overdue in latest quarter 
(based on data from Equifax and Moody’s).  

  The data are available on the book web site in the file indicators.txt. Fit the 
following model to the data:   0 1Y x eb b= + +   . Complete the following tasks:   

(a)     Find a 95% confidence interval for the slope of the regression model,   b1  . On 
the basis of this confidence interval decide whether there is evidence of a 
significant negative linear association.  

(b)   Use the fitted regression model to estimate  E ( Y   |  X =4). Find a 95% confi-
dence interval for  E ( Y   |  X =4). Is 0% a feasible value for  E ( Y   |  X =4)? Give a 
reason to support your answer.     

   3.    The manager of the purchasing department of a large company would like to 
develop a regression model to predict the average amount of time it takes to 
process a given number of invoices. Over a 30-day period, data are collected on 
the number of invoices processed and the total time taken (in hours). The data 
are available on the book web site in the file invoices.txt. The following model 
was fit to the data:   0 1Y x eb b= + +    where  Y  is the processing time and  x  is the 
number of invoices. A plot of the data and the fitted model can be found in 
Figure  2.7 . Utilizing the output from the fit of this model provided below, com-
plete the following tasks.

   (a)    Find a 95% confidence interval for the start-up time, i.e.,   b0  .  
   (b)    Suppose that a best practice benchmark for the average processing time for 

an additional invoice is 0.01 hours (or 0.6 minutes). Test the null hypothesis 
  0 1: 0.01H b =    against a two-sided alternative. Interpret your result.  

   (c)    Find a point estimate and a 95% prediction interval for the time taken to proc-
ess 130 invoices. 
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  Regression output from R for the invoice data  

 Call:   
 lm(formula = Time ~ Invoices)       

 Coefficients:   

  Estimate Std. Error t value Pr(>|t|)   

 (Intercept) 0.6417099 0.1222707  5.248 1.41e-05 ***   

 Invoices 0.0112916 0.0008184 13.797 5.17e-14 ***   

 ---   

  Residual standard error: 0.3298 on 28 degrees of freedom   

 Multiple R-Squared: 0.8718, Adjusted R-squared: 0.8672   

 F-statistic: 190.4 on 1 and 28 DF, p-value: 5.175e-14       

 mean(Time)   

 2.1       

 median(Time)   

 2       

 mean(Invoices)   

 130.0       

 median(Invoices)   

 127.5          

   4.     Straight-line regression through the origin: 
  In this question we shall make the following assumptions:

   (1)     Y  is related to  x  by the simple linear regression model   ( 1,2,..., )
i i i

Y x e i nb= + =   , 
i.e.,   E( | )

i i
Y X x xb= =     

  Figure 2.7    Scatter plot of the invoice data       
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   (2)    The errors   e
1
, e

2
,..., e

n
   are independent of each other  

   (3)    The errors   e
1
, e

2
,..., e

n
   have a common variance   s 2    

   (4)    The errors are normally distributed with a mean of 0 and variance   s2   (espe-
cially when the sample size is small), i.e.,   2|  (~ 0, )e X N s    

 In addition, since the regression model is conditional on  X  we can assume that 
the values of the predictor variable,  x  

 1 
 ,  x  

 2 
 , …,  x  

 n 
  are known fixed constants.    

   (a)    Show that the least squares estimate of   b   is given by
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   (b)    Under the above assumptions show that
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   5.    Two alternative straight line regression models have been proposed for  Y . In the 
first model,  Y  is a linear function of  x  

 1 
 , while in the second model  Y  is a linear 

function of  x  
 2 
 . The plot in the first column of Figure 2.8 is that of  Y  against  x  

 1 
 , 

while the plot in the second column below is that of  Y  against  x  
 2 
 . These plots 

also show the least squares regression lines. In the following statements RSS 
stands for residual sum of squares, while SSreg stands for regression sum of 
squares. Which one of the following statements is true?

   (a)    RSS for model 1 is greater than RSS for model 2, while SSreg for model 1 
is greater than SSreg for model 2.  

   (b)    RSS for model 1 is less than RSS for model 2, while SSreg for model 1 is 
less than SSreg for model 2.  

   (c)    RSS for model 1 is greater than RSS for model 2, while SSreg for model 1 
is less than SSreg for model 2.  

   (d)    RSS for model 1 is less than RSS for model 2, while SSreg for model 1 is 
greater than SSreg for model 2. 

 Give a detailed reason to support your choice.      
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   6.    In this problem we will show that   SST=SSreg+RSS   . To do this we will show 

 
 that   

1

ˆ ˆ( ) 0.) (
n

i i i

i

y y y y
=

− − =∑   

   (a)    Show that   
1( )ˆ( ) ( )

i i i i
y y y y x x

Ÿ

b− = − − −   .  

   (b)    Show that   
1

ˆˆ( ( ))
i i

y y x xb− = −   .  

   (c)    Utilizing the fact that   1
ˆ SXY

SXX
b =   , show that   

1

ˆ ˆ( ) ( ) 0.
n

i i i

i

y y y y
=

− − =∑         

   7.    A statistics professor has been involved in a collaborative research project with 
two entomologists. The statistics part of the project involves fitting regression 
models to large data sets. Together they have written and submitted a manuscript 
to an entomology journal. The manuscript contains a number of scatter plots 
with each showing an estimated regression line (based on a valid model) and 

  Figure 2.8    Scatter plots and least squares lines       
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associated individual 95% confidence intervals for the regression function at 
each  x  value, as well as the observed data. A referee has asked the following 
question: 

 I don’t understand how 95% of the observations fall outside the 95% CI as depicted in the 
figures. 

 Briefly explain how it is entirely possible that 95% of the observations fall outside 
the 95% CI as depicted in the figures.         



   Chapter 3   

  Diagnostics and Transformations for Simple 
Linear Regression         

 In Chapter 2 we studied the simple linear regression model. Throughout Chapter 2, 
we assumed that the simple linear regression model was a valid model for the data, 
that is, the conditional mean of  Y  given  X  is a linear function of  X  and the conditional 
variance of  Y  given  X  is constant. In other words, 

  0 1E( | )Y X x xb b= = +    and   2Var( | ) .Y X x s= =    

 In Section  3.1,  we start by examining the important issue of deciding whether 
the model under consideration is indeed valid. In Section  3.2 , we will see that 
when we use a regression model we implicitly make a series of assumptions. We 
then consider a series of tools known as regression diagnostics to check each assump-
tion. Having used these tools to diagnose potential problems with the assumptions, 
we look at how to first identify and then overcome or deal with a common problem, 
namely, nonconstant error variance. 

 The section on transformations shows how transformations can be used in some 
situations to overcome problems with assumptions due to nonconstant variance or 
nonlinearity, as well as enabling us to fit models for specific purposes, such as to 
estimate percentage effects. 

 A primary aim of this chapter is to understand what actually happens when the 
standard assumptions associated with a regression model are violated, and what 
should be done in response to each violation. 

  3.1  Valid and Invalid Regression Models: 

Anscombe’s Four Data Sets  

 Throughout this section we shall consider four data sets constructed by Anscombe 
(1973). This example illustrates dramatically the point that looking only at the 
numerical regression output may lead to very misleading conclusions about the data, 
and lead to adopting the wrong model. The data are given in the table below 
(Table  3.1 ) and are plotted in Figure  3.1 . Notice that the  Y -values differ in each of 
the four data sets, while the  X -values are the same for data sets 1, 2 and 3.          

S.J. Sheather, A Modern Approach to Regression with R, 45
DOI: 10.1007/978-0-387-09608-7_3, © Springer Science + Business Media LLC 2009
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 When a regression model is fitted to data sets 1, 2, 3 and 4, in each case the fitted 
regression model is  

  ̂ 3.0 0.5y x= +   . 

 The regression output for data sets 1 to 4 is given below. The regression output for the 
four constructed data sets is identical (to two decimal places) in every respect. 

 Table 3.1    Anscombe’s four data sets  

 Case  x1  x2  x3  x4  y1  y2  y3  y4 

 1  10  10  10  8  8.04  9.14  7.46  6.58 

 2  8  8  8  8  6.95  8.14  6.77  5.76 

 3  13  13  13  8  7.58  8.74  12.74  7.71 

 4  9  9  9  8  8.81  8.77  7.11  8.84 

 5  11  11  11  8  8.33  9.26  7.81  8.47 

 6  14  14  14  8  9.96  8.1  8.84  7.04 

 7  6  6  6  8  7.24  6.13  6.08  5.25 

 8  4  4  4  19  4.26  3.1  5.39  12.5 

 9  12  12  12  8  10.84  9.13  8.15  5.56 

 10  7  7  7  8  4.82  7.26  6.42  7.91 

 11  5  5  5  8  5.68  4.74  5.73  6.89 

  Figure 3.1    Plots of Anscombe’s four data sets       
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   Looking at Figure  3.1  it is obvious that a straight-line regression model is appropri-
ate only for Data Set 1, since it is the only data set for which   0 1E( | )Y X x xb b= = +    
and   2)ar( |V Y X x s= =    seem reasonable assumptions. On the other hand, the data 
in Data Set 2 seem to have a curved rather than a straight-line relationship. The 
third data set has an extreme outlier that should be investigated. For the fourth data 
set, the slope of the regression line is solely determined by a single point, namely, 
the point with the largest  x -value. 

 Regression output from R   

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   

 (Intercept) 3.0001 1.1247 2.667 0.02573 *   
 x1 0.5001 0.1179 4.241 0.00217 **   
 ---   
 Signif.  codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05‘.’ 0.1 ‘‘ 1   

 Residual  standard  error:  1.237 on 9 degrees of freedom   
 Multiple R-Squared: 0.6665, Adjusted R-squared: 0.6295   
 F-statistic: 17.99 on 1 and 9 DF, p-value: 0.002170   

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 3.001 1.125 2.667 0.02576 *   
 x2 0.500 0.118 4.239 0.00218 **   
 ---   
 Signif.  codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05‘.’ 0.1 ‘‘ 1 

 Residual  standard  error:  1.237 on 9 degrees of freedom 
   Multiple R-Squared: 0.6662, Adjusted R-squared: 0.6292   
 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179   

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|) 
   (Intercept) 3.0025 1.1245 2.670 0.02562 *   
 x3 0.4997 0.1179 4.239 0.00218 **   
 ---   
 Signif.  codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05‘.’ 0.1 ‘‘ 1 

   Residual standard error: 1.236 on 9 degrees of freedom   
 Multiple R-Squared: 0.6663, Adjusted R-squared: 0.6292   
 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176   

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|) 
   (Intercept) 3.0017 1.1239 2.671 0.02559 *   
 x4 0.4999 0.1178 4.243 0.00216 **   
 ---   
 Signif.  codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05‘.’ 0.1 ‘‘ 1 

   Residual standard error: 1.236 on 9 degrees of freedom   
 Multiple R-Squared: 0.6667, Adjusted R-squared: 0.6297   
 F-statistic: 18 on 1 and 9 DF, p-value: 0.002165     
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 This example demonstrates that the numerical regression output should always 
be supplemented by an analysis to ensure that an appropriate model has been fitted 
to the data. In this case it is sufficient to look at the scatter plots in Figure  3.1  to 
determine whether an appropriate model has been fit. However, when we consider 
situations in which there is more than one predictor variable, we shall need some 
additional tools in order to check the appropriateness of the fitted model.   

  3.1.1 Residuals 

 One tool we will use to validate a regression model is one or more plots of residuals 
(or standardized residuals, which will be defined later in this chapter). These plots 
will enable us to assess visually whether an appropriate model has been fit to the 
data no matter how many predictor variables are used. 

 Figure  3.2  provides plots of the residuals against  X  for each of Anscombe’s four 
data sets. There is no discernible pattern in the plot of the residuals from data set 1 
against  x1 . We shall see next that this indicates that an appropriate model has been 
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  Figure 3.2    Residual plots for Anscombe’s data sets       
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fit to the data. We shall see that a plot of residuals against  X  that produces a random 
pattern indicates an appropriate model has been fit to the data. Additionally, we 
shall see that a plot of residuals against  X  that produces a discernible pattern indi-
cates an incorrect model has been fit to the data.    

 Recall that a valid simple linear regression model is one for which 
  0 1E( | )Y X x xb b= = +    and   2Var( | ) .Y X x s= =     

  3.1.2  Using Plots of Residuals to Determine Whether 

the Proposed Regression Model Is a Valid Model 

  One way of checking whether a valid simple linear regression model has been fit is 

to plot residuals versus x and look for patterns. If no pattern is found then this 

indicates that the model provides an adequate summary of the data, i.e., is a valid 

model. If a pattern is found then the shape of the pattern provides information on 

the function of x that is missing from the model . 
 For example, suppose that the true model is a straight line  

  Y
i
 = E(Y

i
 | X

i
 = x

i
) + e

i
 = b

0
 + b

1
x

i
 + e

i
   

 where   e
i
 =    random fluctuation (or error) in   Y

i
    and is such that   E(e

i
 ) = 0   and that 

we fit a straight line 0 1
ˆ ˆˆ

i i
y xb b= +     . 

 Then, assuming that the least squares estimates   b̂
0
   and   b̂

1
   are close to the 

unknown population parameters  b
0
    and  b

1
   , we find that  

  10 0 1
ˆˆ ˆ ( ) ( )ˆ

i i i i i i
e y y x e eb b b b= − = − + − + ≈   , 

 that is, the residuals should resemble random errors. If the residuals vary with  x  
then this indicates that an incorrect model has been fit. For example, suppose that 
the true model is a quadratic  

  2
0 1 2i i i i

y x x eb b b= + + +    

 and that we fit a straight line  

  0 1
ˆ ˆˆ

i i
y xb b= +    

 Then, somewhat simplistically assuming that the least squares estimates   b̂
0
   and   b̂

1
   

are close to the unknown population parameters   b
0
   and   b

1
  , we find that  

  2 2
0 0 1 1 2 2

ˆ ˆˆ ˆ ( ) ( )
i i i i i i i i

e y y x x e x eb b b b b b= − = − + − + + ≈ +   , 

 that is, the residuals show a pattern which resembles a quadratic function of  x.  In 
Chapter 6 we will study the properties of least squares residuals more carefully.  
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  3.1.3 Example of a Quadratic Model 

 Suppose that  Y  is a quadratic function of  X  without any random error. Then, the 
residuals from the straight-line fit of  Y  and  X  will have a quadratic pattern. Hence, 
we can conclude that there is need for a quadratic term to be added to the original 
straight-line regression model. Anscombe’s data set 2 is an example of such a 
situation. Figure  3.3  contains scatter plots of the data and the residuals from a 
straight-line model for data set 2. As expected, a clear quadratic pattern is evident 
in the residuals in Figure  3.3 .      

  3.2  Regression Diagnostics: Tools for Checking the Validity 

of a Model  

 We next look at tools (called regression diagnostics) which are used to check the 
validity of all aspects of regression models. When fitting a regression model we will 
discover that it is important to:

   1.    Determine whether the proposed regression model is a valid model (i.e., deter-
mine whether it provides an adequate fit to the data). The main tools we will 

  Figure 3.3    Anscombe’s data set 2       
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use to validate regression assumptions are plots of  standardized residuals .  1    
The plots enable us to assess visually whether the assumptions are being 
violated and point to what should be done to overcome these violations.  

   2.    Determine which (if any) of the data points have  x -values that have an unusually 
large effect on the estimated regression model (such points are called  leverage 

points ).  
   3.    Determine which (if any) of the data points are  outliers , that is, points which do 

not follow the pattern set by the bulk of the data, when one takes into account 
the given model.  

   4.    If leverage points exist, determine whether each is a  bad leverage point . If a bad 
leverage point exists we shall assess its influence on the fitted model.  

   5.    Examine whether the assumption of constant variance of the errors is reasonable. 
If not, we shall look at how to overcome this problem.  

   6.    If the data are collected over time, examine whether the data are correlated over time.  
   7.    If the sample size is small or prediction intervals are of interest, examine 

whether the assumption that the errors are normally distributed is reasonable.     

 We begin by looking at the second item of the above list, leverage points, as 
these will be needed in the explanation of standardized residuals. 

  3.2.1 Leverage Points 

 Data points which exercise considerable influence on the fitted model are called 
 leverage points . To make things as simple as possible, we shall begin somewhat 
unrealistically, by describing leverage points as either “good” or “bad.” 

  McCulloch’s example of a “good” and a “bad” leverage point 

 Robert McCulloch from the University of Chicago has produced a web-based 
applet  2    to illustrate leverage points. The applet randomly generates 20 points from 
a known straight-line regression model. It produces a plot like that shown in Figure  3.4 . 
One of the 20 points has an  x -value which makes it distant from the other points 
on the  x -axis. We shall see that this point, which is marked on the plot, is a  good 

leverage point . The applet marks on the plot the true population regression line 
(namely,   b

0
 + b

1
x  ) and the least squares regression line (namely,   

0 1
ˆ ˆŷ xb b= +   ).    

 Next we use the applet to drag one of the points away from the true population 
regression line. In particular, we focus on the point with the largest  x -value. 
Dragging this point vertically down (so that its  x -value stays the same) produces the 
results shown in Figure  3.5 . Notice how in the least squares regression has changed 

  1  Standardized residuals will be defined later in this section. 
  2    http://faculty.chicagogsb.edu/robert.mcculloch/research/teachingApplets/Leverage/index.html     
(Accessed 11/25/2007) 
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dramatically in response to changing the  Y -value of just a single point. The least 
squares regression line has been levered down by single point. Hence we call this 
point a  leverage point . It is a  bad leverage point  since its  Y -value does not follow 
the pattern set by the other 19 points.    

 In summary, a  leverage point  is a point whose  x -value is distant from the other 
 x -values. A point is a  bad leverage point  if its  Y -value does not follow the pattern 
set by the other data points. In other words,  a bad leverage point is a leverage 

point which is also an outlier . 
 Returning to Figure  3.4 , the point marked on the plot is said to be a  good lever-

age point  since its  Y -value closely follows the upward trend pattern set by the other 
19 points. In other words,  a good leverage point is a leverage point which is NOT 

also an outlier.  

  Figure 3.4    A plot showing a good leverage point       

  Figure 3.5    A plot showing a bad leverage point       
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 Next we investigate what happens when we change the  Y -value of a point in 
Figure  3.4  which has a central  x -value. We use the applet to drag one of these points 
away from the true population regression line. In particular, we focus on the point 
with the 11th largest  x -value. Dragging this point vertically up (so that its  x -value 
stays the same) produces the results shown in Figure  3.6 . Notice how in the 
least squares regression has changed relatively little in response to changing the 
 Y -value of centrally located  x . This point is said to be an  outlier that is not a lever-

age point .    

  Huber’s example of a “good” and a “bad” leverage point  

 This example is adapted from Huber (1981, pp. 153–155). The data in this example 
were constructed to further illustrate so-called “good” and “bad” leverage points. 
The data given in Table  3.2  can be found on the book web site in the file huber.txt.       

 Notice that the values of  x  in Table  3.2  are the same for both data sets. Notice 
that the values of  Y  are the same for both data sets except when  x  = 10. We shall 
see that  x  = 10 is a  leverage point  in both data sets in the sense that  this value of x 

is a long way away from the other values of x  and  the value of Y at this point has a 

very large effect on the least squares regression line . The data in Table 3.2 are 

  Figure 3.6    A plot of  Y  against  x  showing an outlier that is not a leverage point       

 Table 3.2    Huber’s so-called bad and good leverage point 
data sets  

  x   YBad  x  YGood 

 – 4  2.48  –4  2.48 

 –3  0.73  –3  0.73 

 –2  –0.04  –2  –0.04 

 –1  –1.44  –1 –1.44 

 0  –1.32  0  –1.32 

 10  0.00  10  –11.40 
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plotted below in Figure 3.7. Regression output from R for the straight-line fits to 
the two data sets is given below.  

  Regression output from R   

 Call:   
 lm(formula = YBad ~ x)   

 Residuals:   
  1 2 3 4 5 6   
  2.0858 0.4173 -0.2713 -1.5898 -1.3883 0.7463   

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept)  0.06833 0.63279  0.108 0.919   
 x  -0.08146 0.13595 -0.599 0.581   

 Residual standard error: 1.55 on 4 degrees of freedom   
 Multiple R-Squared: 0.08237, Adjusted R-squared: -0.147   
 F-statistic: 0.3591 on 1 and 4 DF, p-value: 0.5813   

 Call:   
 lm(formula = YGood ~ x)   

 Residuals:   
  1 2 3 4 5 6   
  0.47813 -0.31349 -0.12510 -0.56672 0.51167 0.01551   

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) -1.83167 0.19640 -9.326 0.000736 ***   
 x -0.95838 0.04219 -22.714 2.23e-05 ***   

     Residual standard error: 0.4811 on 4 degrees of freedom   
 Multiple R-Squared: 0.9923, Adjusted R-squared: 0.9904   
 F-statistic: 515.9 on 1 and 4 DF, p-value: 2.225e-05   

 It is clear from Figure  3.7  that  x  = 10 is very distant from the rest of the  x ’s, 
which range in value from –4 to 0. Next, recall that the only difference between 
the data in the two plots in Figure  3.7  is the value of  Y  when  x  = 10. When  x  = 10, 
YGood = –11.40, and YBad = 0.00. Comparing the plots in Figure  3.7  allows us to 
ascertain the effects of changing a single  Y  value when  x  = 10. This change in  Y  has 
produced dramatic changes in the equation of the least squares line. For example 
looking at the regression output from R above, we see that the slope of the 
regression for YGood is –0.958 while the slope of the regression line for YBad 
is –0.081. In addition, this change in a single  Y  value has had a dramatic effect on 
the value of  R  2  (0.992 versus 0.082).    

 Our aim is to arrive at a numerical rule that will identify  x  
 i 
  as a leverage point 

(i.e., a point of high leverage). This rule will be based on:

  •  The distance  x  
 i 
  is away from the bulk of the  x ’s  

 •  The extent to which the fitted regression line is attracted by the given point    
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 The second bullet point above deals with the extent to which   ŷ
i
   (the predicted value 

of  Y  at   x = x
i
  ) depends on   y

i
   (the actual value of  Y  at   x = x

i
  ). Recall from (2.3) and 

(2.5) that  

  0 1
ˆ ˆˆ

i i
y xb b= +

   

 where
 0 1 1

1
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  Figure 3.7    Plots of 
YGood and YBad 
against  x  with the fitted 
regression lines       
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 Notice that  

  

1 1 1

( )( ) ( )1
1

n n n
i j i

ij j

j j j

x x x x x xn
h x x

n SXX n SXX= = =

− −⎡ ⎤ − ⎡ ⎤= + = + − =⎢ ⎥ ⎣ ⎦
⎣ ⎦

∑ ∑ ∑
   

 since 
1

0.
n

j

j

x x
=

⎡ ⎤− =⎣ ⎦∑  

 We can express the predicted value,   ŷ
i  
 as  

   ˆi ii i ij j

j i

y h y h y
≠

= + ∑    (3.1)   

 where  

  2

2

1

( )1
.

( )

i

ii n

j

j

x x
h

n
x x

=

−
= +

−∑

   

 The term   h
ii
   is commonly called the  leverage  of the  i th data point. Consider, for a 

moment, this formula for leverage (h
ii
). The top line of the second term in the 

formula namely,   (x
i
 – x̄)2  , measures the distance   x

i
   is away from the bulk of the  x ’s, 

via the squared distance   x
i
   is away from the mean of the  x ’s. Secondly, notice that 

  h
ii
   shows how   y

i
   affects   ŷ

i
  . For example, if   h

ii 
≅

 
1   then the other   h

ij
   terms are close 

to zero (since   
1

1
n

ij

j

h
=

=∑   ), and so  

  ŷ
i
 = 1 × y

i
 + other terms ≅ y

i
  . 

 In this situation, the predicted value,   ŷ
i
  , will be close to the actual value,   y

i
  , no 

matter what values of the rest of the data take. Notice also that   h
ii
   depends only on 

the  x ’s. Thus a point of high leverage (or a leverage point) can be found by looking 
at just the values of the  x ’s and not at the values of the  y ’s. 

 It can be shown in a straightforward way that for simple linear regression  

  2
average( ) ( 1,2,..., )

ii
h i n

n
= =   . 

  Rule for identifying leverage points  

 A popular rule, which we shall adopt, is to classify  x  
 i 
  as a point of high leverage 

(i.e., a leverage point) in a simple linear regression model if  

  2 42 average(  ) 2 .
ii ii

h h
n n

> × = × =    
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  Huber’s example of a ‘good’ and a ‘bad’ leverage point  

 Table  3.3  gives the leverage values for Huber’s two data sets. Note that the leverage 
values are the same for both data sets (i.e., for  YGood  and  YBad ) since the  x -values 
are the same for both data sets.       

 Notice that   66
4 40.9359 2 average( )  0.67

6ii
h h

n
= > × = = =   . Thus, the last 

point  x  
 6 
 = 10, is a point of high leverage (or a leverage point), while the other points 

have leverage values much below the cutoff of 0.67. 
 Recall that a point is a  bad leverage point  if its  Y -value does not follow the 

pattern set by the other data points. In other words,  a bad leverage point is a lever-

age point which is also an outlier . We shall see in the next section that we can 
detect whether a leverage point is “bad” based on the value of its standardized 
residual. 

  Strategies for dealing with “bad” leverage points 

   1.     Remove invalid data points      

 Question the validity of the data points corresponding to bad leverage points, 
that is:  Are these data points unusual or different in some way from the rest of 

the data?  If so, consider removing these points and refitting the model without 
them. For example, later in this chapter we will model the price of Treasury bonds. 
We will discover three leverage points. These points correspond to so-called 
“flower” bonds, which have definite tax advantages compared to the other bonds. 
Thus, a reasonable strategy is to remove these cases from the data and refit the 
model without them.

   2.     Fit a different regression model      

 Question the validity of the regression model that has been fitted, that is:  Has an 

incorrect model been fitted to the data?  If so, consider trying a different model 
by including extra predictor variables (e.g., polynomial terms) or by transforming 
 Y  and/or  x  (which is considered later in this chapter). For example, in the case of 
Huber’s bad leverage point, a quadratic model fits all the data very well. See Figure 
 3.8  and the regression output from R for details.     

 Table 3.3    Leverage values for Huber’s two data sets  

  i    x  
 i 
   Leverage,  h  

 ii 
  

 1  –4  0.2897 

 2  –3  0.2359 

 3  –2  0.1974 

 4  –1  0.1744 

 5    0  0.1667 

 6  10  0.9359 
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  Regression output from R   

 Call:   
 lm(formula = YBad ~ x + I(x^2))   

 Coefficients:   
   Estimate Std. Error t value Pr(>|t|)   
 (Intercept) -1.74057 0.29702 -5.860 0.00991 **   
 x -0.65945 0.08627 -7.644 0.00465 **   
 I(x^2) 0.08349 0.01133 7.369 0.00517 **   

 Residual standard error: 0.4096 on 3 degrees of freedom   
   Multiple R-Squared: 0.952, Adjusted R-squared: 0.9199   

 F-statistic: 29.72 on 2 and 3 DF, p-value: 0.01053   

  “Good” leverage points  

 Thus, far we have somewhat simplistically classified leverage points as either “bad” 
or “good”. In practice, there is a large gray area between leverage points which do 
not follow the pattern suggested by the rest of the data (i.e., “bad” leverage points) 
and leverage points which closely follow the pattern suggested by the rest of the data 
(i.e., “good” leverage points). Also, while “good” leverage points do not have an 
adverse effect on the estimated regression coefficients, they do decrease their esti-
mated standard errors as well as increase the value of  R  2 . Hence, it is important to 
check extreme leverage points for validity, even when they are so-called “good.”   

  Figure 3.8    Plot of YBad versus  x  with a quadratic model fit added       
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  3.2.2 Standardized Residuals 

 Thus far we have discussed the use of residuals to detect any problems with 
the proposed model. However, as we shall next show, there is a complication 
that we need to consider, namely, that residuals do not have the same variance. 
In fact, we shall show below that the  i th least squares residual has variance 
given by  

  [ ]2ˆVar( ) 1
i ii

e hs= −    

 where  

  

2

1

( )( ) ( )( )1 1
.

( )

i j i j

ij n

j

j

x x x x x x x x
h

n n SXX
x x

=

− − − −
= + = +

−∑
   

 Thus, if   h
ii 
≅

 
1   (i.e.,  h  is very close to 1) so that the  i th point is a leverage point, then 

the corresponding residual,   ê
i
  , has small variance (since   1 – h

ii 
≅

 
0  ). This seems 

reasonable when one considers that if    h
ii 

≅
 
1   then    ŷ

i
 ≅ y

i
   so that   ê

i
   will always be 

small (and so it does not vary much). 
 We shall also show that   2ˆVar( )

i ii
y hs=   . This again seems reasonable 

when we consider the fact that when   h
ii 

≅
 
1   then   ŷ

i
 ≅ y  . In this case, 

  2 2ˆVar( ) Var( ).
i ii i

y h ys s= ≅ =    
 The problem of the residuals having different variances can be overcome by 

standardizing each residual by dividing it by an estimate of its standard deviation. 
Thus, the  i th  standardized residual ,  r  

 i 
  is given by  

  ˆ

1

i

i

ii

e
r

s h
=

−
   

 where   2

1

1
ˆ

2

n

j

j

s e
n =

=
− ∑   is the estimate of   s   obtained from the model. 

 When points of  high leverage  exist, instead of looking at residual plots, it 
is generally more informative to look at plots of  standardized residuals  since 
plots of the residuals will have nonconstant variance even if the errors have 
constant variance. (When points of high leverage do not exist, there is gener-
ally little difference in the patterns seen in plots of residuals when compared 
with those in plots of standardized residuals.) The other advantage of  stand-

ardized residuals  is that they immediately tell us how many estimated  stand-

ard deviations  any point is away from the fitted regression model. For 
example, suppose that the 6th point has a standardized residual of 4.3, then this 



60 3 Diagnostics and Transformations for Simple Linear Regression

means that the 6th point is an estimated 4.3 standard deviations away from the 
fitted regression line. If the errors are normally distributed, then observing a 
point 4.3 standard deviations away from the fitted regression line is highly 
unusual. Such a point would commonly be referred to as an outlier and as such 
it should be investigated. We shall follow the common practice of labelling 
points as  outliers  in small- to moderate-size data sets if the standardized 
residual for the point falls outside the interval from  –2 to 2 . In very large data 
sets, we shall change this rule to  –4 to 4 . (Otherwise, many points will be 
flagged as potential outliers.)  Identification and examination of any outliers is 

a key part of regression analysis.  
 In summary, an  outlier  is a point whose standardized residual falls outside the 

interval from  –2 to 2.  Recall that a bad leverage point is a leverage point which 
is also an outlier. Thus, a  bad leverage point  is a leverage point whose standar-
dized residual falls outside the interval from  –2 to 2.  On the other hand, a  good 

leverage point  is a leverage point whose standardized residual falls inside the 
interval from  –2 to 2 . 

 There is a small amount of correlation present in standardized residuals, even if 
the errors are independent. In fact it can be shown that  

  2ˆ ˆCov( , ) ( )
i j ij

e e h i js= − ≠     

( )( )
ˆ ˆCorr( , ) ( )

1 1

ij

i j

ii jj

h
e e i j

h h

−
= ≠

− −      

 However, the size of the  correlations inherent in the least squares residuals  
are generally so small in situations in which correlated errors is an issue (e.g., data 
collected over time) that they can be effectively ignored in practice. 

  Derivation of the variance of the  i th residual and fitted value  

 Recall from (3.1) that,  
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 Thus,  
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 So that,  
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  Example: US Treasury bond prices  

 The next example illustrates that a relatively small number of outlying points 
can have a relatively large effect on the fitted model. We shall look at effect of 
removing these outliers and refitting the model, producing dramatically different 
point estimates and confidence intervals. The example is from Siegel (1997, 
pp. 384–385). The data were originally published in the November 9, 1988 edition 
of  The Wall Street Journal  (p. C19). According to Siegel: 



62 3 Diagnostics and Transformations for Simple Linear Regression

 US Treasury bonds are among the least risky investments, in terms of the likelihood of your 
receiving the promised payments. In addition to the primary market auctions by the Treasury, 
there is an active secondary market in which all outstanding issues can be traded. You would 
expect to see an increasing relationship between the coupon of the bond, which indicates the 
size of its periodic payment (twice a year), and the current selling price. The … data set of 
coupons and bid prices [are] for US Treasury bonds maturing between 1994 and 1998… The 
bid prices are listed per ‘face value’ of $100 to be paid at maturity. Half of the coupon rate 
is paid every six months. For example, the first one listed pays $3.50 (half of the 7% coupon 
rate) every six months until maturity, at which time it pays an additional $100.   

 The data are given in Table  3.4  and are plotted in Figure  3.9 . They can be found 
on the book web site in the file bonds.txt. We wish to model the relationship 

 Case  Coupon rate  Bid price  Leverage  Residuals  Std. Residuals 

 1  7.000  92.94  0.049  –3.309  –0.812 

 2  9.000  101.44  0.029  –0.941  –0.229 

 3  7.000  92.66  0.049  –3.589  –0.881 

 4  4.125  94.50  0.153  7.066  1.838 

 5  13.125  118.94  0.124  3.911  1.001 

 6  8.000  96.75  0.033  –2.565  –0.625 

 7  8.750  100.88  0.029  –0.735  –0.179 

 8  12.625  117.25  0.103  3.754  0.949 

 9  9.500  103.34  0.030  –0.575  –0.140 

 10  10.125  106.25  0.036  0.419  0.102 

 11  11.625  113.19  0.068  2.760  0.685 

 12  8.625  99.44  0.029  –1.792  –0.435 

 13  3.000  94.50  0.218  10.515  2.848 

 14  10.500  108.31  0.042  1.329  0.325 

 15  11.250  111.69  0.058  2.410  0.595 

 16  8.375  98.09  0.030  –2.375  –0.578 

 17  10.375  107.91  0.040  1.313  0.321 

 18  11.250  111.97  0.058  2.690  0.664 

 19  12.625  119.06  0.103  5.564  1.407 

 20  8.875  100.38  0.029  –1.618  –0.393 

 21  10.500  108.50  0.042  1.519  0.372 

 22  8.625  99.25  0.029  –1.982  –0.482 

 23  9.500  103.63  0.030  –0.285  –0.069 

 24  11.500  114.03  0.064  3.983  0.986 

 25  8.875  100.38  0.029  –1.618  –0.393 

 26  7.375  92.06  0.041  –5.339  –1.306 

 27  7.250  90.88  0.044  –6.136  –1.503 

 28  8.625  98.41  0.029  –2.822  –0.686 

 29  8.500  97.75  0.030  –3.098  –0.753 

 30  8.875  99.88  0.029  –2.118  –0.515 

 31  8.125  95.16  0.032  –4.539  –1.105 

 32  9.000  100.66  0.029  –1.721  –0.418 

 33  9.250  102.31  0.029  –0.838  –0.204 

 34  7.000  88.00  0.049  –8.249  –2.025 

 35  3.500  94.53  0.187  9.012  2.394 

 Table 3.4    Regression diagnostics for the model in Figure  3.9   
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between bid price and coupon payment. We begin by considering the simple regres-
sion model     

  0 1Y x eb b= + +    

 where  Y  = bid price and  x  = coupon rate. Regression output from R is given below.    

  Regression output from R   

 Call:   
 lm(formula = BidPrice ~ CouponRate)   
 Coefficients: 
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 74.7866 2.8267 26.458 <2e-16 ***   
 CouponRate 3.0661 0.3068 9.994 1.64e-11 ***   
 ---   
 Residual standard error: 4.175 on 33 degrees of freedom   
 Multiple R-Squared: 0.7516, Adjusted R-squared: 0.7441   
 F-statistic: 99.87 on 1 and 33 DF, p-value: 1.645e-11   

    2.5 % 97.5 %   
 (Intercept)    69.036 80.537   
 CouponRate 2.442 3.690   

 Note that a 95% confidence interval for the slope,   b
1
  , is given by (2.44, 3.69). 

Thus, for every 1 unit increase in  x  (i.e., every 1% increase in Coupon Rate) then 
we can be 95% confident that the mean of  Y  (i.e., mean Bid Price) will increase by 
between 2.44 and 3.69 units (i.e., $2.44 and $3.69). 

  Figure 3.9    A plot of the bonds data with the least squares line included       
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 Looking at the fitted regression line with the data in Figure  3.9  we see that the 
fitted model does not describe the data well. The three points on the left of the scat-
ter plot in Figure  3.9  obviously stand out. The least squares line is dragged away 
from the bulk of the points towards these three points. The data would be better 
described by a line that has a steeper slope and a lower intercept than the least 
squares line. In other words, the three points detected earlier distort the least 
squares line. To better understand the effects of these three points we next examine 
standardized residuals and leverage values. 

 Table  3.4  also lists the residuals, the standardized residuals and the leverage 
values for each of the 35 observations. 

 Recall that the rule for simple linear regression for classifying a point as a leverage 
point is    4

ii
h

n
>   . For the bonds data, cases 4, 5, 13 and 35 have leverage values

greater than 0.11   ( )4 4 0.11
35n

= =    and thus can be classified as  leverage

points . Cases 4, 13 and 35 correspond to the three left-most points in Figure  3.9   , 
while case 5 corresponds to the right-most point in this figure.    

 Recall that we classify points as  outliers  if their standardized residuals have 
absolute value greater than 2. Cases 13, 34 and 35 have standardized residuals 
with absolute value greater than 2, while case 4 has a standardized residual 
equal to 1.8. We next decide whether any of the leverage points are outliers, 
that is, whether any so-called bad leverage points exist. Cases 13 and 35 (and 
to a lesser extent case 4) are points of high leverage that are also outliers, i.e., 
 bad leverage points . 
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  Figure 3.10    Plot of standardized residuals with some case numbers displayed       
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 Next we look at a plot of  standardized residuals  against Coupon Rate,  x , in 
order to assess the overall adequacy of the fitted model. Figure  3.10  provides 
this plot. There is a clear non-random pattern evident in this plot. The three 
points marked in the top left hand corner of Figure  3.10  (i.e., cases 4, 13 and 
35) stand out from the other points, which seem to follow a linear pattern. 
These three points are not well-fitted by the model, and should be investigated 
to see if there was any reason why they do not follow the overall pattern set by 
the rest of the data. 

 In this example, further investigation uncovered the fact that cases 4, 13 and 
35 correspond to “flower” bonds, which have definite tax advantages compared 
to the other bonds. Given this information, it is clear that there will be different 
relationship between coupon rate and bid price for “flower” bonds. It is evident 
from Figure  3.9  that given the low coupon rate the bid price is higher for 
“flower” bonds than regular bonds. Thus, a reasonable strategy is to remove the 
cases corresponding to “flower” bonds from the data and only consider regular 
bonds. In a later chapter we shall see that an alternative way to cope with points 
such as “flower” bonds is to add one or more dummy variables to the regression 
model. 

 Figure 3.11 shows a scatter plot of the data after the three so-called “flower 
bonds” have been removed. Marked on Figure  3.11  is the least squares regression 
line for the data without the “flower bonds.” For comparison purposes the horizontal 
and vertical axes in Figure  3.11  are the same as those in Figure  3.9 .     
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  Figure 3.11    A plot of the bonds data with the “flower” bonds removed       
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  Regression output from R   

 lm(formula = BidPrice ~ CouponRate,   
 subset = (1:35)[-c(4, 13, 35)])   

 Coefficients:   
   Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 57.2932 1.0358 55.31 <2e-16 ***   
 CouponRate 4.8338 0.1082 44.67 <2e-16 ***   
 ---   
 Signif. codes: 0  ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘‘ 1   

 Residual standard error: 1.024 on 30 degrees of freedom   
 Multiple R-Squared: 0.9852, Adjusted R-squared: 0.9847   
 F-statistic: 1996 on 1 and 30 DF, p-value: < 2.2e-16   

 Based on all the data, we found previously that the regression coefficient of 
CouponRate (i.e., the slope of the fitted line in Figure  3.11 ) is 3.07 while a 95% 
confidence interval for this slope is (2.44, 3.69). When we remove the three “flower 
bonds” (i.e., cases 4, 13 and 35), the regression coefficient of CouponRate is 4.83, 
as given in the table above. You will notice that 4.83 is  NOT  even in the confidence 
interval based on all 35 cases. We see that a naïve analysis of this data, without 
removing the three “flower bonds,” produces misleading results. 

 Thus, this example has illustrated  the importance of only basing estimates and 

confidence intervals on a valid model . 
 To get the true picture of the relationship between bid price and coupon rate we 

include only bonds that have the same tax status. Based on observation of Figure  3.11 , 
the regression model describes regular bonds relatively well. A one unit increase in 
the coupon rate increases the bond price by an estimated amount of $4.83. However, 
in Figure  3.12  there is evidence of nonconstant error variance, which is the issue we 
take up in the next section. It turns out that nonconstant error variance is to be 
expected in this situation since the maturity date of the bonds varies over a 4-year 
time period.      

  3.2.3  Recommendations for Handling Outliers 

and Leverage Points 

 We conclude this section with some general advice about how to cope with outliers 
and leverage points.

  •  Points should not be routinely deleted from an analysis just because they do not 
fit the model. Outliers and bad leverage points are signals, flagging potential 
problems with the model.  

 •  Outliers often point out an important feature of the problem not considered before. 
They may point to  an alternative model  in which the points are not an outlier. In 
this case it is then worth considering fitting an alternative model. We shall see 
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in Chapter 6 that including one or more dummy variables in the regression model 
is one way of coping with outliers that point to an important feature.     

  3.2.4 Assessing the Influence of Certain Cases 

 One or more cases can strongly control or influence the least squares fit of a regres-
sion model. For example, in the previous example on US Treasury bond prices, 
three cases dramatically influenced the least squares regression model. In this sec-
tion we look at summary statistics that measure the influence of a single case on the 
least squares fit of a regression model. 

 We shall use the notation where subscript ( i ) means that the  i th case has been 
deleted from the fit. In other words, the fit is then based on the other  n  – 1 cases 
(1, 2, …,  i -1,  i  + 1, …,  n ). Thus,   ŷ

j(i)
   denotes the  j th fitted value based on the fit 

obtained when the  i th case has been deleted from the fit. 
 Cook (1977) proposed a widely used measure of the influence of individual 

cases which in the case of simple linear regression is given by:  
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  Figure 3.12    Plot of standardized residuals with the “flower” bonds removed       
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 where  S   2   is the variance of the residuals. It can be shown that  

  
2

2 1
i ii

i

ii

r h
D

h
=

−
   

 where  r  
 i 
  is the  i th standardized residual and  h  

 ii 
  is the  i th leverage value, both of 

which were defined earlier. Thus, Cook’s distance can be obtained by multiplying 
two quantities, namely, the square of the  i th standardized residual divided by two 
and a monotonic function that increases as the  i th leverage value increases. The first 
quantity measures the extent to which the  i th case is outlying while the second 
quantity measures the leverage of the  i th case. Thus, a large value of  D  

 i 
  may be due 

to a large value of  r  
 i 
 , a large value of  h  

 ii 
  or both. 

 According to Weisberg (2005, p. 200), “… if the largest value of  D  
 i 
  is substan-

tially less than one, deletion of a case will not change the estimate … by much”. 

Fox (2002, p. 198) is among many authors who recommend   4 2n −    as “a rough 
cutoff for noteworthy values of  D  

 i 
 ” for simple linear regression. In practice, it is 

important to look for gaps in the values of Cook’s distance and not just whether 
values exceed the suggested cut-off. 

  Example: US Treasury bond prices (cont.)  

 Figure  3.13  contains a plot of Cook’s distance against Coupon Rate,  x . Marked on 
the plot as a horizontal dashed line is the cutoff value of 4/(35–2) = 0.121. Cases 4, 
35 and 13 exceed this value and as such are worthy of investigation. Note that the 
Cook’s distance for case 13 exceeds 1, which means it deserves special attention.     

  Figure 3.13    A plot of Cook’s distance against Coupon Rate       
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  3.2.5 Normality of the Errors 

 The assumption of normal errors is needed in  small samples  for the validity of 
 t -distribution based hypothesis tests and confidence intervals and for  all sample 

sizes  for prediction intervals. This assumption is generally checked by looking at 
the distribution of the residuals or standardized residuals. 

 Recall that the  i th least squares residual is given by   ̂ ˆ
i i i

e y y= −   . We will show 
below that  

  
1

ˆ
n

i i ij j

j

e e h e
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= − ∑   . 

  Derivation:   
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 Thus, the  i th least squares residual is equal to  e  
 i 
  minus a weighted sum of all of the 

 e ’s.  In small to moderate samples , the second term in the last equation can dominate 
the first and  the residuals can look like they come from a normal distribution even 

if the errors do not . As  n  increases, the second term in the last equation has a much 
smaller variance than that of the first term and as such the first term dominates the 
last equation. This implies that for large samples the residuals can be used to assess 
normality of the errors. 
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 In spite of what we have just discovered, a common way to assess normality 
of the errors is to look at what is commonly referred to as a  normal probability 

plot  or a  normal Q–Q plot  of the standardized residuals. A normal probability 
plot of the standardized residuals is obtained by plotting the ordered standardized 
residuals on the vertical axis against the expected order statistics from a standard 
normal distribution on the horizontal axes. If the resulting plot produces points 
“close” to a straight line then the data are said to be consistent with that from a 
normal distribution. On the other hand, departures from linearity provide evi-
dence of non-normality. 

  Example: Timing of production runs (cont.)  

 Recall the example from Chapter 2 on the timing of production runs for which we 
fit a straight-line regression model to run time from run size. Figure  3.14  provides 
diagnostic plots produced by R when the command plot(m1) is used, where m1 is 
the result of the “lm” command. The top right plot in Figure  3.14  is a normal Q–Q 
plot. The bottom right plot of standardized residuals against leverage enables one 
to readily identify any ‘bad’ leverage points. We shall see shortly that the bottom 
left-hand plot provides diagnostic information about whether the variance of the 
error term appears to be constant.     

  Figure 3.14    A normal Q–Q plot and other plots       
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  3.2.6 Constant Variance 

 A crucial assumption in any regression analysis is that the errors have constant vari-
ance. In this section we examine methods for checking whether the assumption of 
 constant variance  of the errors is reasonable. When the variance is found to be 
nonconstant, we can consider two methods for overcoming this, namely, transfor-
mations and weighted least squares.  Ignoring nonconstant variance when it exists 

invalidates all inferential tools (i.e., p-values, confidence intervals, prediction 

intervals  etc. ).  

  Example: Developing a bid on contract cleaning  

 This example is adapted from Foster, Stine, and Waterman (1997, p. 9). According to 
the authors: 

 A building maintenance company is planning to submit a bid on a contract to clean corpo-
rate offices scattered throughout an office complex. The costs incurred by the maintenance 
company are proportional to the number of cleaning crews needed for this task. Recent data 
are available for the number of rooms that were cleaned by varying numbers of crews. For 
a sample of 53 days, records were kept of the number of crews used and the number of 
rooms that were cleaned by those crews.   

 The data are given in Table  3.5  and are plotted in Figure  3.15 . They can be found 
on the book web site in the file cleaning.txt.          

 We want to develop a regression equation to model the relationship between the 
number of rooms cleaned and the number of crews, and predict the number of 
rooms that can be cleaned by 4 crews and by 16 crews. 
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  Figure 3.15    Plot of the room cleaning data with the least squares line added       
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 We begin by considering the regression model  

  0 1Y x eb b= + +    

 where  Y  = number of rooms cleaned and  x  = number of cleaning crews. Regression 
output from R is given below including 95% prediction intervals when  x  = 4 and  x  
= 16, respectively. 

  Regression output from R   

 Call:   
 lm(formula = Rooms ~ Crews)   
 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 1.7847 2.0965 0.851 0.399   
 Crews 3.7009 0.2118 17.472 <2e-16 ***   
 ---   

 Table 3.5    Data on the cleaning of rooms  

 Case 
 Number 
of crews 

 Rooms 
cleaned  Case 

 Number 
of crews 

 Rooms 
cleaned 

 1  16  51  28  4  18 

 2  10  37  29  16  72 

 3  12  37  30  8  22 

 4  16  46  31  10  55 

 5  16  45  32  16  65 

 6  4  11  33  6  26 

 7  2  6  34  10  52 

 8  4  19  35  12  55 

 9  6  29  36  8  33 

 10  2  14  37  10  38 

 11  12  47  38  8  23 

 12  8  37  39  8  38 

 13  16  60  40  2  10 

 14  2  6  41  16  65 

 15  2  11  42  8  31 

 16  2  10  43  8  33 

 17  6  19  44  12  47 

 18  10  33  45  10  42 

 19  16  46  46  16  78 

 20  16  69  47  2  6 

 21  10  41  48  2  6 

 22  6  19  49  8  40 

 23  2  6  50  12  39 

 24  6  27  51  4  9 

 25  10  35  52  4  22 

 26  12  55  53  12  41 

 27  4  15   
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     Residual standard error: 7.336 on 51 degrees of freedom   
 Multiple R-Squared: 0.8569, Adjusted R-squared: 0.854   
 F-statistic: 305.3 on 1 and 51 DF, p-value: < 2.2e-16   

  fit lwr upr   
 1 16.58827 1.589410 31.58713   
 2 60.99899 45.810253 76.18773   

 Figure  3.16  contains a plot of standardized residuals against the number of 
cleaning crews.      It is evident from Figure  3.16  that  the variability in the 

standardized residuals tends to increase  with the number of crews. Thus, 
the assumption that the variance of the errors is constant appears to be vio-
lated in this case. If, as in Figure  3.16 , the distribution of standardized residu-
als appears to be funnel shaped, there is evidence that the error variance is not 
constant. 

 A number of authors (e.g., Cook and Weisberg, 1999b , p. 350) recommend that 
an effective plot to diagnose nonconstant error variance is a plot of  

  |Residuals|0.5 against x    

 or 

|   Standardized Residuals|0.5 against x   
 The power 0.5 is used to reduce skewness in the absolute values. 

 Figure  3.17  contains a plot of the square root of the absolute value of the stand-
ardized residuals against  x . The least squares regression line has been added to the 

  Figure 3.16    Plot of standardized residuals against  x , number of cleaning crews       
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plot. There is clear evidence of an increasing trend in Figure  3.17 , which implies 
that there is evidence that the variance of the errors increases with  x .  

   Figure  3.18  contains four diagnostic plots produced by R. The bottom left-hand 
plot is a plot of the square root of the absolute value of the standardized residuals 
against fitted values. The line added to this plot is that obtained using a nonpara-
metric smoothing method. Since the fitted values are given by   0 1

ˆ ˆŷ xb b= +    the 
shape of this plot and that in Figure  3.17  are identical.    

 In this example, the  x -variable (number of crews) is discrete with values 2, 4, 
6, 8, 10, 12 and16. Notice also that there are multiple measurements of the 
 Y -variable (number of rooms cleaned) at each value of  x . In this special case, it 
is possible to directly calculate the standard deviation of  Y  at each discrete value 
of  x . Table  3.6  gives the value of each of these standard deviations along with 
the number of points each is based on. It is evident from Table  3.6  that the 
 standard deviation of the number of rooms cleaned increases as  x , the number of 
crews increases.       
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  Figure 3.17    A diagnostic plot aimed at detecting nonconstant error variance       

 Table 3.6    The standard deviation of  Y  
for each value of x  

 Crews  N  StDev(Rooms cleaned) 

 2  9  3.00 

 4  6  4.97 

 6  5  4.69 

 8  8  6.64 

 10  8  7.93 

 12  7  7.29 

 16  10  12.00 
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  Figure 3.18    Diagnostic plots from R       
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  Figure 3.19    Plot of the standard deviation of  Y  against  x        
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 Figure  3.19  shows a plot of the standard deviation of the number of rooms cleaned 
against the corresponding value of  x , number of crews. There is striking evidence 
from Figure  3.19  that the standard deviation of  Y  increases as  x  increases.    

 When the assumption that the variance of the errors is constant does not hold, 
we can use weighted least squares to account for the changing variance (with 
weights equal to 1/variance) or try to transform the data so that the nonconstant 
variance problem disappears. We begin by considering the approach based on trans-
formations. We shall look at weighted least squares in Chapter 4.    

  3.3 Transformations  

 In this section we shall see how transformations can be used to

  •  Overcome problems due to nonconstant variance  
 •  Estimate percentage effects  
 •  Overcome problems due to nonlinearity    

  3.3.1 Using Transformations to Stabilize Variance 

 When nonconstant variance exists, it is often possible to transform one or both of the 
regression variables to produce a model in which the error variance is constant. 

  Example: Developing a bid on contract cleaning (cont.)  

 You will recall that in this example we decided that the assumption that the variance 
of the errors is constant does not hold. In particular, there is clear evidence that the 
variance of the errors increases as the value of the predictor variable increases. This 
is not surprising since the  Y -variable in this case (the number of rooms cleaned) is 
in the form of counts. 

 Count data are often modelled using the Poisson distribution. Suppose that  Y  
follows a Poisson distribution with mean   λ  , then it is well-known that the variance 
of  Y  is also equal to   λ  . In this case, the appropriate transformation of  Y  for stabiliz-
ing variance is square root. 

 Justification: 
 Consider the following Taylor series expansion  

  ( ) ( )( )( ) E( ) E( ) E( ) ...f Y f Y f Y Y Y¢= + − +    

 The well-known delta rule for calculating first-order variance terms is obtained by 
considering just the terms given in this last expansion. In particular, taking the vari-
ance of each side of this equation gives  

  ( ) ( ) ( )2
Var ( ) E( ) Var .f Y f Y Y¢⎡ ⎤⎣ ⎦≃    
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 Suppose that   0.5( ) and Var( ) E( )f Y Y Y Yl= = =    then  

  ( ) ( ) ( )
2 20.50.5 0.5Var 0.5 E( ) Var 0.5 constantY Y Y l l

− −⎡ ⎤ ⎡ ⎤= =⎣ ⎦⎣ ⎦≃   . 

 In this case, since the  data  on each axis are  in the form of counts , we shall try the 
 square root transformation  of both the predictor variable and the response vari-
able.  When both Y and X are measured in the same units then it is often natural to 

consider the same transformation for both X and Y.  
 Recall that we want to develop a regression equation to model the relationship 

between the number of rooms cleaned and the number of crews, and predict the 
number of rooms that can be cleaned by 4 crews and by 16 crews. Given below is 
the R output from fitting the model  

  0 1Y x eb b= + +    

  Y  = the  square root  of the number of rooms cleaned and 
  x  = the  square root  of the number of cleaning crews 

 Call:   
 lm(formula = sqrtrooms ~ sqrtcrews)   
 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 0.2001 0.2758 0.726 0.471   
 sqrtcrews 1.9016 0.0936 20.316 <2e-16 ***   
 ---   
 Residual standard error: 0.594 on 51 degrees of freedom   
 Multiple R-Squared: 0.89, Adjusted R-squared: 0.8879   
 F-statistic: 412.7 on 1 and 51 DF, p-value: < 2.2e-16   

  fit lwr upr   
 1 4.003286 2.789926 5.216646   
 2 7.806449 6.582320 9.030578   

 Figure  3.20  contains a scatter plot of the square root of the number of rooms 
cleaned against the square root of the number of crews and a plot of standardized 
residuals against the square root of the number of cleaning crews.      In Figure  3.20  
the variability in the standardized residuals remains relatively constant as the square 
root of the number of crews increase. The standardized residuals do not have a fun-
nel shape, as they did for the untransformed data. 

 Figure  3.21  gives the diagnostics plots produced by R, associated with the “lm” 
command. The bottom left-hand plot further demonstrates the benefit of the square 
root transformation in terms of stabilizing the error term. Thus, taking the square 
root of both the  x  and the  y  variables has stabilized the variance of the random 
errors and hence produced a valid model.    

 Finally, given that we have a valid regression model we are now in the position 
to be able to predict the number of rooms that can be cleaned by 4 crews and 16 
crews (as we set out to do). These results based on the regression model for the 
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  Figure 3.20    Plots of the transformed data and the resulting standardized residuals       

−1.0

0.0

3 4 5 6 7 8 −2 −1 0 1 2

1.2

0.8

0.4

0.0

1.0
2

−2

1

0

2

−2

1

0

Fitted Values

R
e
s
id

u
a
ls

Residuals vs Fitted

31

5

46

Theoretical Quantiles

S
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

Normal Q−Q

31

5

46

Fitted Values

S
ta

n
d
a
rd

iz
e
d
 R

e
s
id

u
a
ls Scale−Location

31 546

0.00876543 0.02 0.04 0.06

Leverage

S
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

Cook’s distance

Residuals vs Leverage

5

46

4

  Figure 3.21    Diagnostic plots from R       
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square root transformed data are given in Table  3.7 . For comparison purposes the 
results for the raw data are also presented. Notice that the prediction interval based 
on the transformed data is narrower than that based on the untransformed data when 
the number of crews is 4 and wider when the number of crews is 16. This is to be 
expected in this situation since on the original scale the data have variance which 
increases as the  x -variable increases meaning that realistic prediction intervals will 
get wider as the  x -variable increases.  In summary, ignoring nonconstant variance 

in the raw data from this example led to invalid prediction intervals.         

  3.3.2 Using Logarithms to Estimate Percentage Effects 

 In this section we illustrate how logarithms can be used to estimate percentage 
effects. In particular, we shall consider the regression model  

  0 1log( ) log( )Y x eb b= + +    

 where here, and throughout the book, log refers to log to the base  e  or natural loga-
rithms. In this situation the slope  
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 Table 3.7    Predictions and 95% prediction intervals for the number of rooms  

  x , Crews  Prediction  Lower limit  Upper limit 

 4 (transformed data)  16 =(4.003 2 )  8 =(2.790 2 )  27=(5.217 2 ) 

 4 (raw data)  17  2  32 

 16 (transformed data)  61 =(7.806 2 )  43 =(6.582 2 )  82 =(9.031 2 ) 

 16 (raw data)  61  46  76 
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 That is, the slope approximately equals the ratio of the percentage changes in  Y  and 
 x . So that, for small   b1    

  1% %Y xbΔ × Δ≃   . 

 Thus for every 1% increase in  x , the model predicts a   b1  % increase in  Y  ( provided 
  b1   is small). 

  An example using logs to estimate the price elasticity of a product  

 We want to understand the effect of price on sales and in particular to develop a 
technique to estimate the percentage effect on sales of a 1% increase in price. This 
effect is commonly referred to as price elasticity. 

 This example from Carlson (1997) is based on a case involving real supermarket 
sales data from Nielson SCANTRACK. According to Carlson (1997, p. 37): 

 Susan Thurston, a product manager for Consolidated Foods Inc., is responsible for devel-
oping and evaluating promotional campaigns to increase sales for her canned food product. 
She has just been appointed product manager for Brand 1, which competes in retail food 
markets with three other major brands (Brands 2, 3 & 4). Brands 1 and 2 are the dominant 
brands in the sense that they have a much larger share of the market than Brands 3 and 4. 
The product is well established in a stable market and is generally viewed by consumers as 
a food commodity. Successful product performance requires strategies that encourage 
customers to move to Susan’s brand from the various competing brands. She can encourage 
this movement by various kinds of reduced price specials, in-store displays, and newspaper 
advertising. Susan’s competitors have at their disposal the same strategic tools for increas-
ing their sales.   

  Figure 3.22    A scatter plot of sales against price       
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 We shall start by examining the subset of the available information. The data 
we first consider are weekly sales (in thousands of units) of Brand 1 at a major 
US supermarket chain over a year along with the price each week. The data are 
plotted in Figure  3.22  and can be found on the book web site in the file con-
food1.txt.    

 Notice that the distribution of each variable in Figure  3.22  appears to be 
skewed. A large outlier is clearly apparent in Figure  3.22 . In addition, it is clear 
that a straight line does not adequately model the relationship between price and 
sales. 

 When studying the relationship between price and quantity in economics, it is 
common practice to take the logarithms of both price and quantity since interest lie 
in predicting the effect of a 1% increase in price on quantity sold. In this case the 
model fitted is  

  0 1log( ) log( )Q P eb b= + +    

 where  P  = price and  Q  = quantity (i.e., sales in thousands of units).   The log-trans-
formed data are plotted in Figure  3.23 .    

  Figure 3.23    A scatter plot of log(sales) against log(price)       
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 The regression output from R is given below: 

  Regression output from R   

 Call:   
 lm(formula = log(Sales) ~ log(Price))   
 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 4.8029 0.1744 27.53  <2e-16 ***   
 log(Price) -5.1477 0.5098 -10.10 1.16e-13 ***   
 ---   
 Residual standard error: 0.4013 on 50 degrees of freedom   
 Multiple R-Squared: 0.671, Adjusted R-squared: 0.6644   
 F-statistic: 102 on 1 and 50 DF, p-value: 1.159e-13   

 The slope   b̂1   in the fitted model  

  
0 1

ˆ ˆlog( ) log( )Q Pb b= +      

  approximately  equals the ratio of the percentage changes in  Q  &  P . In this equation, 
the slope   b̂1   is an estimate of the price elasticity of demand (i.e., the percentage 
change in quantity demanded in response to the percentage change in price). In this 
case,   b̂1   = –5.1 and so we estimate that for every 1% increase in price there will be 
approximately a 5.1% reduction in demand. Since the magnitude of   b̂   is greater 
than 1, the quantity demanded is said to be “elastic,” meaning that a price change 
will cause an even larger change in quantity demanded. Now, revenue is price times 
quantity. Price has risen, but proportionately, quantity has fallen more. Thus reve-
nue has fallen. Increasing the price of the food product will result in a revenue 
decrease, since the revenue lost from the resulting decrease in quantity sold is more 
than the revenue gained from the price increase. 

  Figure 3.24    A plot of standardized residuals against log(price)       
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 As is our practice, we look at a plot of standardized residuals against the predic-
tor variable given below in Figure  3.24 . There is a nonrandom pattern (somewhat 
similar to a roller coaster) evident in the plot of standardized residuals in Figure 
 3.24 . Thus, we should not be satisfied with the current fitted model. When one 
considers that other variables (such as advertising) affect sales, it is clear that the 
current model can be improved by the inclusion of these variables. (In Chapter 9, 
we will look at models involving more than a single predictor variable to see if we 
can arrive at a more satisfactory model.)      

  3.3.3  Using Transformations to Overcome Problems 

due to Nonlinearity 

 In this section we consider the following two general methods for transforming the 
response variable  Y  and/or the predictor variable  X  to overcome problems due to 
nonlinearity:

  •  Inverse response plots  
 •  Box-Cox procedure    

 There are three situations we need to consider (a) only the response variable needs 
to be transformed; (b) only the predictor variable needs to be transformed; and (c) 
both the response and predictor variables need to be transformed. We begin by 
looking at the first situation. 

  Transforming only the response variable Y using inverse regression  

 Suppose that the true regression model between  Y  and  X  is given by  

0 1( )Y g x eb b= + +      

 where  g  is a function which is generally unknown. The previous model can be 
turned into a simple linear regression model by transforming  Y  by  g  –1 , the inverse 
of  g , since,  

  
1

0 1( )g Y x eb b− = + +   . 

 For example suppose that  

  
3

0 1( )Y x eb b= + +    

 then,  

  
1

33 1( ) and so ( )g Y Y g Y Y
−= =    . 

Next, suppose that  

  0 1exp( )Y x eb b= + +    
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 then,  

  
1( ) exp( ) andso ( ) log( )g Y Y g Y Y

−= =    

 We next look at methods for estimating  g  –1 . 

  Generated Example  

 The 250 data points in this example were generated from the model  

  
3

0 1( )Y x eb b= + +    

 with  x  and  e  independently normally distributed. (This situation is very similar to 
that in Cook and Weisberg (1999b , p. 318).) Our aim is to estimate the function 
  

1
31( )g Y Y

− =    that transforms  Y  so that the resulting model is a simple linear regres-
sion model. The generated data we shall consider can be found on the course web 
site in the file responsetransformation.txt. A plot of  Y  and  x  is given in Figure  3.25 . 
We begin by fitting the straight line regression model     

 0 1Y x eb b= + +    (3.2)     

 Figure  3.26  contains a scatter plot of the standardized residuals against  x  and a 
plot of the square root of the absolute value of the standardized residuals against  x . 
Both plots in Figure  3.26  produce striking patterns. The left-most plot shows that 
the standardized residuals are strongly related to  x  in a nonlinear manner. This 
indicates that model (3.2) is not an appropriate model for the data. The right-most 
plot shows that the variance of the standardized residuals is not constant, instead, it 
changes dramatically with  x . This indicates that the variance of the errors in model 

  Figure 3.25    A plot of  Y  vs  x  for the generated data (responsetransformation.txt)       
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(3.2) is not constant. In view of both of these findings, it is natural to consider 
transforming  Y  or  x  or both.    

 We begin by looking at the shape of the distributions of  Y  and  x . Figure  3.27  
contains box plots, normal Q–Q plots and Gaussian kernel density estimates (based 
on the Sheather-Jones bandwidth, Sheather and Jones, 1991). A kernel density 
estimate can be thought as a smoothed histogram. For an introduction to and over-
view of kernel density estimation see Appendix A.1    

 It is evident from Figure  3.27  that the distribution of  Y  is skewed. On the other 
hand the distribution of  x  is consistent with a normal distribution. We shall consider 
transforming only  Y  since transforming a symmetrically distributed variable will 
produce a variable with a skewed distribution. 

  Inverse response plots  

 Suppose that the true regression model between  Y  and  X  is given by  

  0 1( )Y g x eb b= + +    

 where  g  is an unknown function. Recall that the previous model can be turned into a 
simple linear regression model by transforming  Y  by  g  ̄1 , the inverse of  g , since,  

  
1

0 1( )g Y x eb b− = + +   . 

 Thus, if we knew   b0 and b1  we could discover the shape of  g  –1  by plotting  Y  on the 
horizontal axis and   b0 + b1x   on the vertical axis. 

  Figure 3.26    Diagnostic plots for model (3.2)       
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 Based on the results of Li and Duan (1989), Cook and Weisberg (1994) showed 
that if  x  has an elliptically symmetric distribution then  g  -1  can be estimated from the 
scatter plot of  Y  (on the horizontal axis) and the fitted values from model (3.2), i.e., 
  0 1

ˆ ˆŷ xb b= +    (on the vertical axis). Such a plot is commonly referred to as an 
 inverse response plot  (since the usual axis for  Y  is the vertical axis). A truly 
remarkable aspect of the inverse response plot is that the fitted values used are from 
a regression model, which is itself only valid when  g  is the identity function. 

 It can be shown that the assumption that the univariate variable  x  has a normal 
distribution is much stronger than the assumption that the distribution of  x  is ellipti-
cally symmetric. 

  Generated example (cont.)  

 Figure  3.28  contains an inverse response plot for the data in the generated example. 
(Since  x  is normally distributed in this example, we should be able to estimate  g  –1  
from the inverse response plot.) Marked on the plot are three so-called power curves  

  ˆ for 0,0.33,1y y
l l= =    

 where   ŷ   are the fitted values from model (3.2) and, as we shall see below,   λ = 0   
corresponds to natural logarithms.    
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  Figure 3.27    Box plots, normal Q–Q plots and kernel density estimates of  Y  and  x        



3.3 Transformations 87

 It is evident that among the three curves in Figure  3.28 , the power curve  

     ̂y = �b̂
0
+ b̂

1
x

 
� = y0.33

 provides the closest fit to the data. This is to be expected since the data were gener-
ated from the model  

  3
0 1 0 1( ) ( )Y g x e x eb b b b= + + = + +    

 so that  

  

1
31

0 1( )g Y Y x eb b− = = + +   . 

  Choosing a power transformation  

 To estimate  g  –1  in general we consider the following family of  scaled power trans-

formations , defined for strictly positive  Y  by  

  
( 1) / if 0

( , )
log( )      i f =0

S

Y
Y

Y
Y l

l

λ⎧ − λ λ ≠
= ⎨

⎩
   

 Scaled power transformations have the following three properties:

   1.      ( , )
S

YY l    is a continuous function of   l    
   2.    The logarithmic transformation is a member of this family, since 

  

( )
0 0

1
lim ( , ) lim log( )

S

Y
Y Y

l

l l
Y l

l→ →

−
= =

    

  Figure 3.28    Inverse response plot for the generated data set       

−20

20

40

60

0

0 20 40

y

60 80

y
h
a
t

0.33
0
1



88 3 Diagnostics and Transformations for Simple Linear Regression

   3.    Scaled transformations preserve the direction of the association between  Y  and 
 X  in the sense that if  Y  and  X  are positively (negatively) related than   ( , )

S
YY l    and 

 X  are positively (negatively) related for all values of   l       

 Thus, to estimate  g  –1 , we consider fitting models of the form 

 
0 1

ˆE( | ) ( , )
S

y Y y ya a Y l= = +    (3.3)     

 For a given value of   l  , model (3.3) is just a simple linear regression model with the 
predictor variable given by   ( , )

S
yY l    and the response variable given by   ŷ  . Weisberg 

(2005, p. 151) recommends fitting (3.3) by least squares for a range of values of   l   
and choosing the estimated optimal value of   l   (which we will denote by   l̂   ) as the 
value of   l   that minimizes the residual sum of squares (which we will denote by 
RSS(l    )). Weisberg (2005, p. 151) claims that “selecting   l   to minimize RSS(  l  ) from  

    { }1 1 1 11, , ,0, , ,1
2 3 3 2

l ∈ − − −  

 is usually adequate”. We shall see that it is sometimes beneficial to also add the 

values   1 1 and 
4 4

−    to the set of   l   values under consideration. 

  Generated example (cont.)  

 Figure  3.29  provides a plot of RSS(  l  ) for model (3.3) against   l   across the set of   l   
values given above for the data in the generated example.    

 It is evident from Figure  3.29  that the value of   l   that minimizes RSS(  l  ) in this 
case falls somewhere between 0 and 0.5. Choosing a smaller range of   l   values, one 

  Figure 3.29    A plot of RSS(  l  ) against   l   for the generated data set       
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can find that the optimal value of   l   is given by   l̂ = 0.332  . Thus, in this case, the 
estimated power transformation  

  
1 0.332( )g Y Y

− =    

 is very close to the value used to generate the data  

  1
1 3( ) .g Y Y

− =    

 Alternatively, one can estimate   0 1, ,a a l    in (3.3) simultaneously using nonlinear 
least squares and hence obtain the optimal value of   l  . The function inverse.
response.plot in the alr3 R-library of Weisberg (2005) performs this task. 
Figure  3.28 , which provides an example of its use, shows three fits of model (3.3) 
 corresponding to   l = 0,0.33,1   with   l = 0.33   providing the optimal fit. 

 Later in this section, we shall apply the inverse response plot technique on a real 
data set. In the meantime, we next consider an alternative method for transforming 
 Y , namely, the Box-Cox procedure. 

  Transforming only the response variable Y using the Box-Cox method  

 In one of the most highly cited papers in statistics  3   , Box and Cox (1964) provide a 
general method for transforming a strictly positive response variable  Y . We shall see 
that this method and its natural extensions can also be used to transform one or 
more strictly positive predictor variables. The Box-Cox procedure aims to find a 
transformation that makes the transformed variable close to normally distributed. 
Before we look into the details of this procedure, we shall look at the properties of 
least squares and likelihood methods when both  X  and  Y  are normally distributed. 

  Simple Linear Regression when both X and Y are normal  

 Suppose that  y  
 i 
  and  x  

 i 
  are the observed values of normal random variables with 

means   and
Y X

m m   , respectively, variances   s
Y
2   and s

X
2, respectively, and correlation, 

  r
XY

  . Then it can be shown (e.g., Casella and Berger, 2002, p. 550) that  

  

( )2 2|  , 1 . ~ Y Y

i i Y XY X XY i Y XY

X X

y x N x
s s

m r m r s r
s s

⎛ ⎞
− + −⎜ ⎟⎝ ⎠

   

 This can be rewritten as   ( )2
0 1| ,~ 

i i i
y x N xb b s+      where 

  ( )2 2 2
0 1 1, , Var( | ) 1Y

Y X XY Y XY

X

Y X
s

b m b m b r s s r
s

= − = = = −    .

 In other words, if  y  
 i 
  and  x  

 i 
  are the observed values of normal random variables 

then the regression of  Y  on  X  is  

  3  According to the Web of Science, the Box and Cox (1964) paper has been cited more than 3000 
times as of January 25, 2007. 
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  0 1E( | ) ,
i i

Y X x xb b= = +    

 a linear function of  x  
 i 
 . The Box-Cox transformation method, and its natural exten-

sions, tries to find a transformation that makes  Y  and  X  as close to normal distrib-
uted as possible, since then the regression of  Y  on  X  should be close to linear. The 
Box-Cox method is based on likelihood approach and so we briefly review these 
principles next. 

  Maximum Likelihood applied to Simple Linear Regression when both X and Y 

are normal  

 As above, suppose that  y  
 i 
  and  x  

 i 
  are the observed values of normal random varia-

bles. Then,    ( )2
0 1| ,~ 

i i i
y x N xb b s+  . Thus, the conditional density of  y  

 i 
  given  x  

 i 
  is 

given by  

  

( )2

0 1

2

1
( | ) exp .

22

i i

i i

y x
f y x

b b

ss p

⎛ ⎞− −
= −⎜ ⎟⎜ ⎟⎝ ⎠    

 Assuming the  n  observations are independent then given  Y  the likelihood function 
is the function of the unknown parameters   b0, b1, s

2   given by  

  

( )

( )

2

0 12
0 1 2

1 1

2

0 12
1

1
( , , | ) ( | ) exp

22

1 1
exp

22

n n
i i

i i

i i

n
n

i i

i

y x
L Y f y x

y x

b b
b b s

ss p

b b
ss p

= =

=

⎛ ⎞− −
= = −⎜ ⎟⎜ ⎟⎝ ⎠

⎛ ⎞ ⎛ ⎞
= − − −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∏ ∏

∑
   

 The log-likelihood function is given by   

 

( )
( )

2
0 1

22
0 12

1

log ( , , | )

1
log(2 ) log( )

2 2 2

n

i i

i

L Y

n n
y x

b b s

p s b b
s =

= − − − − −∑
   

(3.4)
     

 We see that   b0 and b1   are the only unknowns in the third term of this last equation. 
Thus, the maximum likelihood estimates of   b0 and b1   can be obtained by minimizing 
this third term, that is, by minimizing the residual sum of squares. Thus, the maxi-
mum likelihood estimates of   b0 and b1   are the same as the least squares estimates. 
With   b0 and b1   equal to their least squares estimates, equation (3.4) becomes  

  ( )2 2
0 1 2

1ˆ ˆlog ( , , | ) log(2 ) log( )  RSS
2 2 2

n n
L Yb b s p s

s
= − − −

   

 where in this context RSS is the residual sum of squares corresponding to the least 
squares estimates, i.e.,  
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( )2

0 1
1

ˆ ˆRSS
n

i i

i

y xb b
=

= − −∑
   

 Differentiating the last log likelihood equation with respect to   s  2  and setting the 
result to zero gives the maximum likelihood estimate of   s2   as  

  s =2
MLE

1
ˆ .RSS

n
   

 Notice that this estimate differs slightly from our usual estimate of   s2  , namely,  

  
2 1

.
(

RSS
2)

S
n

=
−    

  The Box-Cox method for transforming only the response variable  

 Box and Cox (1964) considered the modified family of power transformations  

  
1

1 gm( ) ( 1) /   if 0
( , ) ( , ) gm( )

gm( ) log( )       if =0M S

Y Y
Y Y Y

Y Y

l l
l l l

Y l Y l
l

−
− ⎧ − ≠= × = ⎨

⎩
   

 where   
1

1 1

1
gm( ) exp log( )

nn

n
i i

i i

Y Y Y
n= =

⎛ ⎞
= = ⎜ ⎟⎝ ⎠∏ ∑    is the geometric mean of  Y . The 

 Box-Cox method is based on the notion that for some value of   λ   the transformed 
version of  Y , namely,   ( , )

M
YY l    is normally distributed. As pointed out by Weisberg 

(2005, p. 153), multiplication of   ( , )
s

YY l    by   gm( Y )1¯λ   ensures that the units of 
  ( , )

M
YY l    are the same for all values of   λ  . The log-likelihood function for 

  2
0 1, , , | ( , )

M
Yb b s l Y l    is given by (3.4) with  y  

 i 
  replaced by   ( , )

M
YY l   , i. e., by  

  

( )
( )

2
0 1

22
0 12

1

log ( , , , | ( , ))

1
log(2 ) log( ) ( , )

2 2 2

M

n

M i i

i

L Y

n n
y x

b b s l Y l

p s y l b b
s =

= − − − − −∑
   

 since it can be shown that the Jacobian of the transformation   ( , )
M

YY l    equals 1 for 
each value of   λ  . For a given value of   λ   this last equation is the same as (3.4) with 
 y  

 i 
  replaced by   ( , )

M i
yY l   . Thus, for a fixed value of   λ  , the maximum likelihood 

estimates of   b0, b1 and s2   are the same as above with  y  
 i 
  replaced by   ( , )

M i
yY l   . With   b0, 

b1 and s2   replaced by these estimates the log-likelihood is given by  

  

( )2
0 1

ˆ ˆ ˆlog ( , , , | ( , ))

1
log(2 ) log(RSS( ) ) RSS( )

2 2 2 RSS( )

log(2 ) log(RSS( ) )
2 2 2

M
L Y

n n
n

n

n n n
n

b b l y l

p l l
l

p l

= − − −

= − − −

σ
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 where   RSS (λ)   is the residual sum of squares with  y  
 i 
  replaced by   ( , )

M i
yY l    , i.e., 

  ( )2

0 1
1

ˆ ˆ( ) ( , )
n

M i i

i

RSS y xl Y l b b
=

= − −∑    

 Since only the second term in the last equation involves the data, maximizing 

  ( )2
0 1

ˆ ˆ ˆlog ( , , , | ( , ))
M

L Yb b s l Y l    with respect to   l   is equivalent to minimizing   RSS (λ)  

with respect to   l  . Likelihood methods can be used to find a confidence interval for   l  . 

  Generated example (cont.)  

 Figure  3.30  provides plots of the log-likelihood against   l   for the data in the gener-
ated example. The value of   l   that maximizes the log-likelihood and 95% confi-
dence limits for   l   are marked on each plot. The values on the horizontal axis of the 
right hand plot are restricted so that it is easier to read of the value of   λ   that maxi-
mizes the log-likelihood, namely, 0.333.    

 In summary, we have found that

  •  Inverse response/fitted value plot estimated   λ   to be   λ̂  = 0.332    
 •  Box-Cox procedure estimated   λ   to be   λ̂ = 0.333      

 Given below is the output from R from fitting a linear model to ty where   ty = Y ⅓  . 

  Figure 3.30    Log-likelihood for the Box-Cox transformation method       

0.28 0.32 0.36

−695

−690

−685

−680

−675

−670

−665

λ

lo
g
−

L
ik

e
lih

o
o
d

95%

0.325 0.335

−664.0

−663.5

−663.0

−662.5

λ

lo
g
−

L
ik

e
lih

o
o
d

95%



3.3 Transformations 93

  Regression output from R   

 Call:   
 lm(formula = ty ~ x)   

             Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 0.008947 0.011152 0.802 0.423   
 x 0.996451 0.004186 238.058 <2e-16 ***   
 ---   
     Residual standard  error:  0.05168  on  248  degrees  of  freedom   
 Multiple  R-Squared:   0.9956,   Adjusted   R-squared: 0.9956   
 F-statistic:  5.667e+04   on   1   and   248    DF,   p-value:   <   2.2e-16   

 Finally, Figure  3.31  contains a box plot, a normal Q–Q plot and a Gaussian 
kernel density estimate of the transformed version of  Y , namely,   Y ⅓  . It is evident 
that the  transformed data are consistent with that from a normal distribution. Also 
given below is a scatter plot of   Y ⅓   against  x , which shows striking evidence of a 
linear relationship.    

  Figure 3.31    Box plots, normal Q–Q plots and kernel density estimates of  Y  1/3        
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  Transforming only the predictor variable X  

 We again consider the following family of  scaled power transformations , this time 
defined for strictly positive  X  by  

  
( 1) /   if 0( , )
log( )       if =0S

X
X

X

l l lY l
l

⎧ − ≠= ⎨
⎩

   

 Since we are transforming only X, we consider fitting models of the form  

 0 1( | ) ( , )
S

E Y X x xa a Y l= = +    (3.5)     

 For a given value of   λ  , model (3.5) is just a simple linear regression model with the 
predictor variable given by   ( , )

S
xY l    and the response variable given by   y  . As before 

we fit (3.5) by least squares for a range of values of   l   and choosing the estimated 
optimal value of   l   (which we will denote by   λ   ̂ ) as the value of l     that minimizes the 
residual sum of squares (which we will denote by RSS(  l  )). 

  Alternatively , we could use a version of the Box-Cox transformation method that 
aims to make the distribution of the transformed version of  X  as normal as possible. 
Note that there is no regression model in this case and the Box-Cox method is 
modified to apply directly to  X . 

  Important caution re-transformations  

 Transformations do not perform well in every situation. In particular, it may not be 
possible to develop a regression model for  Y  based on a single predictor  X , no mat-
ter what transformations are considered for  Y  and/or  X . This can occur for example 
when important predictors which interact with other are not included in the model. 
Secondly, the result of the Box-Cox transformation method may be a transformed 
variable that is not very close to normally distributed. 

  Transforming both the response and the predictor variables  

 When both  X  and  Y  are highly skewed and transformations of both variables are 
desirable the following two alternative approaches are suggested by Cook and 
Weisberg (1999b , p. 329): 

  Approach 1: 

   1.    Transform  X  so that the distribution of the transformed version of  X ,   ( , )
S X

xY l    
is as normal as possible. The univariate version of the Box-Cox transformation 
procedure is one way to do this.  

   2.    Having transformed  X  to   ( , )
S X

xY l   , consider a simple linear regression model of 
the form   0 1( ( , ) )

S X
Y g x eb b Y l= + +   . Then use an inverse response plot to decide 

on the transformation,  g  –1  for  Y .     

  Approach 2:  

 Transform  X  and  Y  simultaneously to joint normality using the multivariate gener-
alization of the Box-Cox method. We discuss this approach next. 
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  Multivariate generalization of the Box-Cox transformation method  

 Velilla (1993) proposed the following extension of the Box-Cox method to 
transforming two or more variables towards joint normality. Here we con-
sider just two variables ( X  and  Y ). Define the modified family of power 
transformations  

  ( ( , ), ( , ))
M Y M X

Y XY l Y l    

 where

      

1
1 gm( ) ( 1) /   if 0

( , ) ( , ) gm( )
gm( ) log( )                if = 0 

Y Y

Y Y Y

Y

M Y S Y

Y Y
Y Y Y

Y Y

l l
l l l

Y l Y l
l

−
−

⎧⎪ − ≠= × = ⎨
⎪⎩   . 

 Then we proceed by considering the log-likelihood function of   ( ( , ), ( , ))
M Y M X

Y XY l Y l
  and choosing   λ

Y
,
 
λ

X
   to maximize it. The solution turns out to be obtained by mini-

mizing the determinant of an estimated variance-covariance matrix (see Weisberg 
2005, pp. 290–291 for details). 

  Example: Government salary data  

 This example is taken from Weisberg (2005, pp. 163–164). The data concern the 
maximum salary for 495 nonunionized job classes in a midwestern government unit 
in 1986. The data can be found in the R-package, alr3 in the file salarygov.txt. At 
present we shall focus on developing a regression model to predict 

 MaxSalary = maximum salary (in $) for employees in this job class 
 using just one predictor variable, namely, 

 Score = score for job class based on difficulty, skill level, training requirements 
and level of responsibility as determined by a consultant to the government unit. 

 We begin by considering a straight line model for the untransformed data, i.e., 
  

0 1MaxSalary Score eb b= + +   . Figure  3.32  contains a plot of the data, a plot of the 
standardized residuals against Score, and a plot of the square root of the absolute 
value of the standardized residuals against Score. There is clear evidence of non-
linearity and nonconstant variance in these plots. Thus we consider transforming 
one or both of the variables.    

 We next look at the shape of the distributions of MaxSalary and Score. Figure 
 3.33  contains box plots, normal Q–Q plots and Gaussian kernel density estimates 
(based on the Sheather-Jones bandwidth).    

 It is evident from Figure  3.33  that the distribution of both MaxSalary and Score 
are skewed. We shall therefore consider transforming both variables. 

  Approach 2: Transforming both variables simultaneously  

 Given below is the output from R using the bctrans command from alr3 
R-library.  
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  Output from R   

 box.cox Transformations to Multinormality   
  Est.Power Std.Err. Wald(Power=0) Wald(Power=1)   

 MaxSalary -0.0973 0.0770 -1.2627 -14.2428   
 Score 0.5974 0.0691 8.6405 -5.8240   
  LRT df p.value   
 LR test, all lambda equal 0 125.0901 2 0   
 LR test, all lambda equal 1 211.0704 2 0   

 Using the Box-Cox method to transform the two variables simultaneously 
toward bivariate normality results in values of   ,

Y X
l l    close to 0 and 0.5, respec-

tively. Thus, we shall consider the following two variables, log(MaxSalary) and 
  Score   . 

 Figure  3.34  shows a plot of log(MaxSalary) and   Score    with the least squares line 
of best fit added. It is evident from this figure that the relationship between the trans-
formed variables is more linear than that between the untransformed variables.    

 Figure  3.35  contains box plots, normal Q–Q plots and Gaussian kernel density 
estimates (based on the Sheather-Jones bandwidth) of the transformed data. It is evi-
dent that the log and square root transformations have dramatically reduced skewness 
and produced variables which are more consistent with normally distributed data.    
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  Figure 3.32    Plots associated with a straight line model to the untransformed data       
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  Figure 3.33    Plots of the untransformed data       

  Figure 3.34    Plot of log(MaxSalary) and     Score  with the least squares line added       
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 Next in Figure  3.36  we look at some diagnostic plots for the transformed data, 
namely, a plot of the standardized residuals against   Score  , and a plot of the square 
root of the absolute value of the standardized residuals against   Score   for the 
regression model  

  0 1log(MaxSalary) Score .eb b= + +       

  Approach 1: Transforming X first and then Y.  

 Finally in this section we consider what we previously called approach (1) to trans-
forming both  X  and  Y . In this approach we begin by transforming  X . One way to do 
this is to use a variant of the Box-Cox transformation method. Define the modified 
family of power transformations  

  ( , )
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XY l    
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  Figure 3.35    Plots of the transformed data       
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  Figure 3.36    Diagnostic plots from the model based on the transformed data       

 Then we proceed by considering the log-likelihood function of   ( , )
M X

XY l    and choos-
ing   l

X
   to maximize it. Note that there is no regression model here. Thus, this is an 

unconditional application of the Box-Cox procedure in that there is no regression 
model. The object is to make the distribution of the variable  X  as normal as possible. 

 Having transformed  X  to   ( , )
s X

xY l   , consider a simple linear regression model 
of the form   0 1( ( , ) )

S X
Y g x eb b Y l= + +   . Then use an inverse response plot to decide 

on the transformation,  g  –1  for Y. 

  Example: Government salary data (cont.)  

 We apply approach (1) to the data. Recall that  Y  = MaxSalary and  X  = Score. Given 
below is the output from R using the bctrans command from alr3.  

  Output from R   

 box.cox Transformations to Multinormality   
  Est.Power Std.Err. Wald(Power=0) Wald(Power=1)   
 Score 0.5481 0.0957 5.728 -4.7221   
  LRT df p.value   
 LR test, all lambda equal 0 35.16895 1 3.023047e-09   
 LR test, all lambda equal 1 21.09339 1 4.374339e-06   

 Using the Box-Cox method to transform the  X  variable, Score toward normality 
results in a value of   l

X
   close to 0.5. Thus, we shall again consider the following 

 variable   Score   . Thus we shall consider a model of the form   
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 0 1MaxSalary ( Score )g eb b= + +    (3.6)     

 and seek to find  g  –1 , the inverse of  g , using an inverse response plot, since,  

  
1

0 1(MaxSalary) Scoreg eb b− = + +   . 

 Figure  3.37  contains an inverse response plot for the government salary data in 
the generated example. (Since the predictor variable   Score    has been transformed 
towards normality, we should be able to estimate  g  –1  from the inverse response 
plot.) Marked on the plot are three so-called power curves  

  ˆ MaxSalary for 0.19,0,1Y

Y
y

l l= = −       

 where   l = 0   corresponds to natural logarithms. It is evident that among the three 
curves, the power curve  

  ( ) 0.19
0 1

ˆ ˆˆ Score MaxSalaryy b b −= + =    

 provides the closest fit to the data in Figure  3.37 . 
 Rounding the estimated optimal value of   l

Y
   to –0.25, we shall consider the fol-

lowing transformed  Y -variable,   MaxSalary¯0.25  . Figure  3.38  contains a box plot, a 
normal Q–Q plot and Gaussian kernel density estimate (based on the Sheather-
Jones bandwidth) for the variable   MaxSalary¯0.25  . Comparing Figure  3.39  with 
Figure  3.35  it seems that in terms of consistency with normality there is little to 
choose between the transformations   MaxSalary¯0.25   and log(MaxSalary).    

  Figure 3.37    Inverse response plot based on model (3.6)       
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 Figure  3.39  shows a plot of   MaxSalary−0.25   and   Score   with the least squares 
line of best fit added. It is evident from this figure that the relationship between 
the transformed variables is more linear than that between the untransformed 
variables.    

 Figure  3.39  also contains some diagnostic plots for the transformed data, 
namely, a plot of the standardized residuals against   Score  , and a plot of the 
square root of the absolute value of the standardized residuals against   Score   
for the model  

  0.25
0 1MaxSalary Score eb b− = + +   . 

 It is evident from the last two plots in Figure  3.39  that the variance of the stand-
ardized residuals decreases slightly as   Score    increases. Furthermore, comparing 

  Figure 3.38    Plots of the transformed MaxSalary variable       
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Figures  3.36  and  3.39 , the model associated with Figure  3.36  is to be slightly 
 preferred to the model associated with Figure  3.39  on the basis that the variance of 
the standardized residuals appears to be more constant in Figure  3.36 . Thus, our 
preferred regression model is  

  0 1log(MaxSalary) Score eb b= + +    

 Cook and Weisberg (1999 , p. 329) point out that in many cases approaches (1) and 
(2) will lead to “essentially the same answers”. In the government salary example 
the final models differed in terms of the transformation recommended for the 
response variable, MaxSalary. They also point out that the approach based on 
inverse fitted value plots (i.e. approach (1)) is more robust, as the Box-Cox method 
is susceptible to outliers, and as such approach (1) may give reasonable results 
when approach (2) fails. 

 Finally, Figure  3.40  contains a flow chart which summarizes the steps in devel-
oping a simple linear regression model.       
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  Figure 3.39    Plots associated with the model found using approach (1)       
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  3.4 Exercises  

    1.    The data file airfares.txt on the book web site gives the one-way airfare (in US dol-
lars) and distance (in miles) from city A to 17 other cities in the US. Interest centers 
on modeling airfare as a function of distance. The first model fit to the data was 

 0 1Fare Distance eb b= + +    (3.7)    

   (a)     Based on the output for model (3.7) a business analyst concluded the 
following:         

 The regression coefficient of the predictor variable, Distance is highly statistically signifi-
cant and the model explains 99.4% of the variability in the Y-variable, Fare. Thus model 
(1) is a highly effective model for both understanding the effects of Distance on Fare and 
for predicting future values of Fare given the value of the predictor variable, Distance. 

  Figure 3.40    Flow chart for simple linear regression       
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 Provide a detailed critique of this conclusion.

   (b)     Does the ordinary straight line regression model (3.7) seem to fit the data well? 
If not, carefully describe how the model can be improved.     

 Given below and in Figure 3.41 is some output from fitting model (3.7).    

  Output from R   

 Call:   
 lm(formula = Fare ~ Distance)   

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 48.971770 4.405493 11.12 1.22e-08 ***   
 Distance 0.219687 0.004421 49.69 <2e-16 ***   
 ---   
 Signif. codes:  0‘***’0.001  ‘**’  0.01‘*’0.05  ‘.’  0.1 ‘‘1   

 Residual standard error: 10.41 on 15 degrees of freedom   
 Multiple R-Squared:0.994, Adjusted  R-squared: 0.9936   
 F-statistic: 2469 on 1 and 15 DF, p-value: < 2.2e-16  

   2.    Is the following statement true or false? If you believe that the statement is false, 
provide a brief explanation.     

 Suppose that a straight line regression model has been fit to bivariate data set of the form 
( x  

1
 ,  y  

1
 ), ( x  

2
 ,  y  

2
 ),…, ( x  

n 
,  y  

n 
). Furthermore, suppose that the distribution of  X  appears to be 

normal while the  Y  variable is highly skewed. A plot of standardized residuals from the 

  Figure 3.41     Output from model (3.7)       
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least squares regression line produce a quadratic pattern with increasing variance when 
plotted against ( x  

1
 ,  x  

2
 ,…,  x  

n
 ). In this case, one should consider adding a quadratic term in  X  

to the regression model and thus consider a model of the form   
2

0 1 2Y x x eb b b= + + +   .

   3.    The price of advertising (and hence revenue from advertising) is different from 
one consumer magazine to another. Publishers of consumer magazines argue 
that magazines that reach more readers create more value for the advertiser. 
Thus, circulation is an important factor that affects revenue from advertising. In 
this exercise, we are going to investigate the effect of circulation on gross 
advertising revenue. The data are for the top 70 US magazines ranked in terms 
of total gross advertising revenue in 2006. In particular we will develop regres-
sion models to predict gross advertising revenue per advertising page in 2006 
(in thousands of dollars) from circulation (in millions). The data were obtained 
from   http://adage.com     and are given in the file AdRevenue.csv which is avail-
able on the book web site. Prepare your answers to parts A, B and C in the form 
of a report.     

  Part A 

    (a)     Develop a simple linear regression model based on least squares that predicts 
advertising revenue per page from circulation (i.e., feel free to transform 
either the predictor or the response variable or both variables). Ensure that 
you provide justification for your choice of model.  

    (b)     Find a 95% prediction interval for the advertising revenue per page for 
magazines with the following circulations:  

     (i)    0.5 million  
    (ii)    20 million  

    (c)    Describe any weaknesses in your model.        

  Part B 

    (a)     Develop a polynomial regression model based on least squares that directly 
predicts the effect on advertising reve-nue per page of an increase in circula-
tion of 1 million people (i.e., do not transform either the predictor nor the 
response variable). Ensure that you provide detailed justification for your 
choice of model. [Hint: Consider polynomial models of order up to 3.]  

    (b)     Find a 95% prediction interval for the advertising page cost for magazines 
with the following circulations:  

     (i)    0.5 million  
    (ii)    20 million  

    (c)    Describe any weaknesses in your model.     

  Part C 

    (a)     Compare the model in Part A with that in Part B. Decide which provides a 
better model. Give reasons to justify your choice.  

    (b)     Compare the prediction intervals in Part A with those in Part B. In each case, 
decide which interval you would recommend. Give reasons to justify each 
choice.  
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   4.     Tryfos (1998, p. 57) considers a real example involving the management at a 
Canadian port on the Great Lakes who wish to estimate the relationship between 
the volume of a ship’s cargo and the time required to load and unload this cargo. It 
is envisaged that this relationship will be used for planning purposes as well as for 
making comparisons with the productivity of other ports. Records of the tonnage 
loaded and unloaded as well as the time spent in port by 31 liquid-carrying vessels 
that used the port over the most recent summer are available. The data are available 
on the book website in the file glakes.txt. The first model fit to the data was 

 0 1Time Tonnage eb b= + +    (3.8)         

 On the following pages is some output from fitting model (3.8) as well as some 
plots of Tonnage and Time (Figures 3.42 and 3.43).

    (a)     Does the straight line regression model (3.8) seem to fit the data well? If not, 
list any weaknesses apparent in model (3.8).  

    (b)     Suppose that model (3.8) was used to calculate a prediction interval for 
Time when Tonnage = 10,000. Would the interval be too short, too long or 
about right (i.e., valid)? Give a reason to support your answer.     

 The second model fitted to the data was 

 0.25
0 1log(Time) Tonnage eb b= + +    (3.9)     
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Figure 3.42 Output from model (3.8)



  Figure 3.43    Density estimates, box plots and Q–Q plots of Time and Tonnage       
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 Output from model (3.9) as well as some plots (Figures 3.44 and 3.45) appears on 
the following pages.

   (a)     Is model (3.9) an improvement over model (3.8) in terms of predicting Time? 
If so, please describe all the ways in which it is an improvement.  

   (b)     List any weaknesses apparent in model (3.9).       

Regression output from R for model (3.8)   

 Call:   
 lm(formula = Time ~ Tonnage)   

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 12.344707 2.642633  4.671 6.32e-05 ***   
 Tonnage  0.006518 0.000531 12.275 5.22e-13 ***   
 ---   
 Residual   standard    error:   10.7 on  29   degrees   of  freedom   
 Multiple R-Squared: 0.8386, Adjusted R-squared: 0.833   
 F-statistic: 150.7 on 1 and 29 DF, p-value: 5.218e-13    
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  Output from R   

 box.cox Transformations to Multinormality   
  Est.Power Std.Err. Wald(Power=0) Wald(Power=1)   
 Time 0.0228 0.1930 0.1183 -5.0631   
 Tonnage 0.2378 0.1237 1.9231 -6.1629   
  LRT df p.value   
 LR test, all lambda equal 0  3.759605 2 1.526202e-01   
 LR test, all lambda equal 1 45.315290 2 1.445140e-10     

  Output from R for model (3.9)   

 Call:   
 lm(formula = log(Time) ~ I(Tonnage^0.25))   

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 1.18842 0.19468 6.105 1.20e-06 ***   
 I(Tonnage^0.25) 0.30910 0.02728 11.332 3.60e-12 ***   
 ---   
 Signif.  codes:  0‘***’  0.001   ‘**’  0.01  ‘*’  0.05‘.’ 0.1‘‘1   

 Residual standard error: 0.3034 on 29 degrees of freedom   
 Multiple R-Squared: 0.8158, Adjusted R-squared: 0.8094   
 F-statistic: 128.4 on 1 and 29 DF, p-value: 3.599e-12      

   Figure 3.44    Output from model (3.9)        
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    5.     An analyst for the auto industry has asked for your help in modeling data on the 
prices of new cars. Interest centers on modeling suggested retail price as a func-
tion of the cost to the dealer for 234 new cars. The data set, which is available 
on the book website in the file cars04.csv, is a subset of the data from  
         http://www.amstat.org/publications/jse/datasets/04cars.txt         

 (Accessed March 12, 2007) 
 The first model fit to the data was  

 0 1Suggested Retail Price Dealer Cost eb b= + +    (3.10)     

 On the following pages is some output from fitting model (3.10) as well as some plots 
(Figure 3.46).

   (a)     Based on the output for model (3.10) the analyst concluded the following: 

 Since the model explains just more than 99.8% of the variability in Suggested Retail Price 
and the coefficient of Dealer Cost has a t-value greater than 412, model (1) is a highly 
effective model for producing prediction intervals for Suggested Retail Price.       

 Provide a detailed critique of this conclusion.

  Figure 3.45    Density estimates, box plots and Q–Q plots of log(Time) and Tonnage 0.25        
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   (b)      Carefully describe all the shortcomings evident in model (3.10). For each short-
coming, describe the steps needed to overcome the shortcoming.     
 The second model fitted to the data was  

 0 1log(Suggested Retail Price) log(Dealer Cost) eb b= + +    (3.11)     

 Output from model (3.11) and plots (Figure 3.47) appear on the following pages.

   (c)     Is model (3.11) an improvement over model (3.10) in terms of predicting 
Suggested Retail Price? If so, please describe all the ways in which it is an 
improvement.  

   (d)    Interpret the estimated coefficient of log(Dealer Cost) in model (3.11).  
   (e)    List any weaknesses apparent in model (3.11).         

  Regression output from R for model (3.10)   

 Call:   
 lm(formula = SuggestedRetailPrice ~ DealerCost)   

  Figure 3.46    Output from model (3.10)       
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 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) -61.904248 81.801381 -0.757 0.45   
 DealerCost 1.088841 0.002638 412.768 <2e-16 ***   
 ---   
 Signif.  codes:  0‘***’0.001  ‘**’  0.01  ‘*’  0.05  ‘.’  0.1‘‘ 1   

 Residual standard error: 587 on 232 degrees of freedom   
 Multiple R-Squared:0.9986, Adjusted  R-squared: 0.9986   
 F-statistic:  1.704e+05  on  1  and  232   DF,   p-value:  <  2.2e-16       

  Output from R for model (3.11)   

 Call:   
 lm(formula = log(SuggestedRetailPrice) ~ log(DealerCost))   

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) -0.069459 0.026459 -2.625 0.00924 **   
 log(DealerCost) 1.014836 0.002616 387.942 <2e-16 ***   
 ---   
 Signif.codes:0‘***’0.001 ‘**’0.01 ‘*’0.05‘.’ 0.1 ‘‘1   

 Residual standard error: 0.01865 on 232 degrees of freedom   
 Multiple R-Squared: 0.9985, Adjusted  R-squared: 0.9985   
 F-statistic: 1.505e+05 on 1 and 232 DF, p-value: < 2.2e-16  

  Figure 3.47    Output from model (3.11)       
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   3.    A sample of  n  = 500 data points were generated from the following model      

  
0 1( )Y g x eb b= + +    

 where   0 12.5, 1, (.) exp(.)gb b= = =   , the errors  e  being normally distributed and 
the distribution of  x  highly skewed. Figure  3.48  contains the inverse response 
plot. It produces the estimate   l̂ = 0.61  . In this case, the correct transformation of 
 Y  corresponds to taking   l = 0   and hence using   1

0 1( ) log( )g Y Y x eb b− = = + +   . 
Explain why the inverse response plot fails to produce an estimated value of   l   
close to the correct value of   l   in this situation.    

    7.    When  Y  has mean and variance both equal to   m   we showed earlier in this chapter 
that the appropriate transformation of  Y  for stabilizing variance is the square root 
transformation. Now, suppose that  Y  has mean equal to   m   and variance equal to 
  m2   show that the appropriate transformation of  Y  for stabilizing variance is the 
log transformation.  

   8.    Chu (1996) discusses the development of a regression model to predict the price 
of diamond rings from the size of their diamond stones (in terms of their weight 
in carats). Data on both variables were obtained from a full page advertisement 
placed in the  Straits Times  newspaper by a Singapore-based retailer of diamond 
jewelry. Only rings made with 20 carat gold and mounted with a single diamond 
stone were included in the data set. There were 48 such rings of varying designs. 
(Information on the designs was available but not used in the modeling.) 

  Figure 3.48    Inverse response plot       
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The weights of the diamond stones ranged from 0.12 to 0.35 carats (a one carat 
diamond stone weighs 0.2 gram) and were priced between $223 and $1086. The 
data are available on the course web site in the file diamonds.txt.     

  Part 1 

    (a)     Develop a simple linear regression model based on least squares that directly 
predicts Price from Size (that is, do not transform either the predictor nor the 
response variable). Ensure that you provide justification for your choice of 
model.  

    (b)    Describe any weaknesses in your model.     

  Part 2 

    (a)     Develop a simple linear regression model that predicts Price from Size (i.e., 
feel free to transform either the predictor or the response variable or both 
variables). Ensure that you provide detailed justification for your choice of 
model.  

    (b)     Describe any weaknesses in your model.     

 Part 3 

 Compare the model in Part A with that in Part B. Decide which provides a better 
model. Give reasons to justify your choice.            



   Chapter 4   

  Weighted Least Squares         

 In Chapter 3, we saw that it is sometimes possible to overcome nonconstant error 
variance by transforming  Y  and/or  X . In this chapter we consider an alternative way of 
coping with nonconstant error variance, namely weighted least squares (WLS). 

  4.1  Straight-Line Regression Based 

on Weighted Least Squares  

 Consider the straight linear regression model  

  
= + +0 1i i i

Y x eb b    

 where the  e  
 i 
  have mean 0 but variance   s 2 / w

i
  . When  w  

 i 
  is very large then the 

variance of  e  
 i 
  is close to 0. In this situation, the estimates of the regression 

parameters   b
0
 and b

1
   should be such that the fitted line at  x  

 i 
  should be very close to  y  

 i 
 . 

On the other hand, when  w  
 i 
  is very small then the variance of  e  

 i 
  is very large. In this 

situation, the estimates of the regression parameters   b
0
 and b

1
   should take little 

account of the values ( x  
 i 
 ,  y  

 i 
 ). In the extreme situation that  w  

 i 
  is 0 then the variance of 

 e  
 i 
  is equal to infinity and the  i th case ( x  

 i 
 ,  y  

 i 
 ) should be ignored in fitting the line: this 

is equivalent to deleting the  i th case ( x  
 i 
 ,  y  

 i 
 ) from the data and fitting the line based 

on the other  n  – 1 cases. 
 Thus, we need to take account of the weights  w  

 i 
  when estimating the regression 

parameters   b
0
 and b

1
  . This is achieved by considering the following weighted version 

of the residual sum of squares  

  = =

= − = − −∑ ∑2 2
0 1

1 1

ˆWRSS ( ) ( ) .
n n

i i Wi i i i

i i

w y y w y b b x
   

 WRSS is such that the larger the value of  w  
 i 
  the more the  i th case ( x  

 i 
 ,  y  

 i 
 ) is taken 

into account. To obtain the weighted least squares estimates we seek the values of 
 b  

0
  and  b  

 1 
  that minimize WRSS. For WRSS to be a minimum with respect to  b  

0
  and 

 b  
 1 
  we require  
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0 1

10

WRSS
2 ( ) 0

n

i i i

i

w y b b x
b =

= − − − =∑∂
∂

  

  

0 1
11

WRSS
2 ( ) 0.

n

i i i i

i

w x y b b x
b =

∂
= − − − =

∂ ∑
   

 Rearranging terms in these last two equations gives  

   
0 1

1 1 1

n n n

i i i i i

i i i

w y b w b w x
= = =

= +∑ ∑ ∑   
 

(4.1)

   

 

   
2

0 1
1 1 1

n n n

i i i i i i i

i i i

w x y b w x b w x
= = =

= +∑ ∑ ∑   
 
(4.2)   

 These last two equations are called the  normal equations . Multiplying equation 

(4.1) by   
1

n

i i

i

w x
=
∑    and equation (4.2) by   

1

n

i

i

w
=
∑    gives 

    

2

0 1
1 1 1 1 1

n n n n n

i i i i i i i i i

i i i i i

w x w y b w w x b w x
= = = = =

⎛ ⎞
= + ⎜ ⎟⎝ ⎠∑ ∑ ∑ ∑ ∑

and 

  
2

0 1
1 1 1 1 1 1

.
n n n n n n

i i i i i i i i i i

i i i i i i

w w x y b w w x b w w x
= = = = = =

= +∑ ∑ ∑ ∑ ∑ ∑    

 Subtracting the first equation from the second and solving for  b  
 1 
  gives the so-called 

 weighted least squares estimate  of the slope  
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1 1 1 1

and . 
n n n n

W i i i W i i i

i i i i

x w x w y w y w
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= =∑ ∑ ∑ ∑      From which we can find 

the  weighted least squares estimate  of the intercept  
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  Example: Developing a bid on contract cleaning (cont.)  

 This example was first discussed in Chapter 3. Recall that the aim of the exercise 
was to develop a regression equation to model the relationship between the  number 

of rooms cleaned ,  Y  and the  number of crews ,  X  and predict the number of rooms 
that can be cleaned by 4 crews and by 16 crews. In this example, the  x -variable 
(number of crews) is discrete with values 2, 4, 6, 8, 10, 12 and 16. Recall also that 
there are multiple measurements of the  Y -variable (number of rooms cleaned) at 
each value of  x . In  this special case , it is possible to directly calculate the standard 
deviation of  Y  at each discrete value of  x . Table  4.1  gives the value of each of these 
standard deviations along with the number of points each is based on.     

 Consider the simple linear regression model 
 

  
= + +0 1i i i

Y x eb b    

 where the  e  
 i 
  have mean 0 but variance   s 2 / w

i
  . In this case we take  

    
( )2

1

Standard Deviation( )
i

i

w
Y

=

   

then Y
i
 has variance s 2 / w 

i 
 with s 2 = 1. We shall use the estimated or sample stand-

ard deviations in Table  4.1  to produce the weights  w  
 i 
 . The data set with these 

weights included can be found on the book web site in the file cleaningwtd.txt. 
Given below is the weighted least squares regression output from R including 95% 
prediction intervals for  Y  when  x  = 4 and 16. 

  Regression output from R  

 Call:   
 lm(formula = Rooms ~ Crews, weights = 1/StdDev^2)   

 Residuals:   

  Min  1Q Median 3Q Max   

  -1.43184  -0.82013 0.03909 0.69029 2.01030   

 Coefficients:   

  Estimate Std. Error t value Pr(>|t|)   

 (Intercept) 0.8095 1.1158 0.725  0.471   

 Crews  3.8255 0.1788 21.400 <2e-16 ***   

 ---   

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1   

 Residual standard error: 0.9648 on 51 degrees of freedom   

 Multiple R-Squared: 0.8998, Adjusted R-squared: 0.8978   

 F-statistic: 458 on 1 and 51 DF, p-value: < 2.2e-16   

  fit lwr upr   

 1 16.11133 13.71210 18.51056   

 2 62.01687 57.38601 66.64773   
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  4.1.1 Prediction Intervals for Weighted Least Squares 

 According to Weisberg (2006, p. 42):  1  

  The predict helper function also works correctly for getting predictions and standard errors 
of fitted values, but it apparently does not always give the right answer for prediction inter-
vals. Both R and S-Plus compute the standard error of prediction as    

  ( )2 2ˆ sefit( | *) ,y X xs + =
   

 rather than  

    ( )2 2ˆ / * sefit( | *) .w y X xs + =  

 The R/S-Plus formula assumes that the variance of the future observation is   s 2   rather than 
  s 2 / w *   , where  w  *  is the weight for the future value.  

  4.1.2 Leverage for Weighted Least Squares 

 The  i th fitted or predicted value from weighted least squares is given by  

  0 1
ˆ ˆˆ

Wi W W i
y xb b= +    

 where  0 1
ˆ ˆ

W W W W
y xb b= −     and       

( )( )

( )

( )

( )

( )
1 1 1

1
2 2

1 1

ˆ

n n n

j j W j W j j W j j j W j

j j j

W n n

j j W j j W

j j

w x x y y w x x y w x x y

WSXX
w x x w x x

b
= = =

= =

− − − −
= = =

− −

∑ ∑ ∑

∑ ∑

   1  Weisberg, S. (2006)  Computing Primer for Applied Linear Regression, Third Edition Using R 

and S-Plus , available at   www.stat.umn.edu/alr/Links/RSprimer.pdf    .  

 Table 4.1    The standard deviation of  Y  for each value of  x   

  x , Crews  N  Standard deviation( Y  
 i 
 ) 

 2  9  3.00 
 4  6  4.97 
 6  5  4.69 
 8  8  6.64 
 10  8  7.93 
 12  7  7.29 
 16  10  12.00 
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 where   ( )2

1

.
n

j j W

j

WSXX w x x
=

= −∑    So that, letting  
1

n
S

j j k

k

w w w
=

= ∑      

  

( )

( )

( )

1 1

1

1 1 1

1

1

ˆ ˆˆ

ˆ

( )
/

( )

Wi W W W W i

W W i W

n n n
j j W

j j k j i W

j k j

n
j i W j WS

j j

j

n

Wij j

j

y y x x

y x x

w x x
w y w y x x

WSXX

w x x x x
w y

WSXX

h y

b b

b

= = =

=

=

= − +

= + −

−
= + −

⎡ ⎤− −
= +⎢ ⎥

⎢ ⎥⎣ ⎦

=

∑ ∑ ∑

∑

∑

   

 where  

  ( )( )
j i W j WS

Wij j

w x x x x
h w

WSXX

⎡ ⎤− −
= +⎢ ⎥

⎢ ⎥⎣ ⎦

   

 Thus,  

  ˆWi Wii i Wij j

j i

y h y h y
≠

= + ∑    

 where     
( )2

.
i i WS

Wii i

w x x
h w

WSXX

⎡ ⎤−
⎢ ⎥= +
⎢ ⎥⎣ ⎦

   

  Reality Check : All weights equal, then WLS = LS. 
 Take w

j
 = 1/n   (then w s

j
  = 1/n) and h

Wij
 = h

ij
   as given in (3.1).  

  4.1.3 Using Least Squares to Calculate Weighted Least Squares 

 Consider the simple linear regression model  

   
0 1i i i

Y x eb b= + +    (4.3)   

 where the  e  
 i 
  have mean 0 but variance   s 2 / w

i
     . Notice that if we multiply both sides 

of the last equation by   
i

w    we get  

   0 1i i i i i i i
w Y w w x w eb b= + +    (4.4)   
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 where the   
i i

w e    have mean 0 but variance    ( )2

i
w ×    s 2 /w

i
     = s 2 . Thus, it is possible

to calculate the weighted least squares fit of model (4.3) by calculating the least 
squares fit to model (4.4). Model (4.4) is a multiple linear regression with two 
 predictors and no intercept. To see this, let  

  
NEW 1NEW 2NEW NEW, , and  

i i i i i i i i i i i
Y w Y x w x w x e w e= = = =    

 then we can rewrite model (4.4) as  

   
NEW 0 1NEW 1 2NEW NEWi i i i

Y x x eb b= + +    (4.5)   

  Example: Developing a bid on contract cleaning (cont.)  

 Recall that in this case we take  

    ( )2

1 .
Standard deviation( )

i

i

w
Y

=
  

 We shall again use the estimated or sample standard deviations in Table  4.1  to 
produce the weights  w  

 i 
 . Given below is the least squares regression output 

from R for model (4.5) including 95% prediction intervals for  Y  when  x  = 4 
and 16. 

 Comparing the output from R on the next page with that on page 4, we see that 
the results are the same down to and including  Residual standard error.

  Regression output from R  

 Call:   
 lm(formula = ynew ~ x1new + x2new - 1)   

 Residuals:   
  Min 1Q Median 3Q Max   
 -1.43184 -0.82013 0.03909 0.69029 2.01030   

 Coefficients:   
      Estimate Std. Error t value Pr(>|t|)   
 x1new 0.8095 1.1158 0.725 0.471   
 x2new 3.8255 0.1788 21.400 <2e-16 ***   
 ---   
 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1   

 Residual standard error: 0.9648 on 51 degrees of freedom   
 Multiple R-Squared: 0.9617, Adjusted R-squared: 0.9602   
 F-statistic: 639.6 on 2 and 51 DF, p-value: < 2.2e-16   

  fit lwr upr   
 1 3.243965 1.286166 5.201763   

 2 5.167873 3.199481 7.136265   

page 117
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 The fits and prediction intervals above are for   NEWi i i
Y w Y=   . To obtain the fits and 

prediction intervals for  Y  
 i 
  we need to multiply the values for   NEWi

Y    by  1
i

w    . 
Looking at Table  4.1  we see that when   24, 1 / 4.97

i
x w= =    and when 

  216, 1 /12.00
i

x w= =   . The results are given in Table  4.2     . Also given, for compari-
son purposes, are results obtained from the transformed data in Chapter 3. 

 It is evident from Table  4.2  that the predictions are close for both methods. The 
prediction intervals are close when  x  = 4. However, when  x  = 16, the prediction 
interval is wider for weighted least squares. Can you think of a reason why this 
might be so?  

  4.1.4 Defining Residuals for Weighted Least Squares 

 In the case of weighted least squares, the residuals are defined by  

  ( )ˆ ˆ
Wi i i Wi

e w y y= −    

 where  0 1
ˆ ˆˆ

Wi W W i
y xb b= +    . With this definition, the weighted least squares are obtained 

by minimizing the sum of the squared residuals  

  2 2

1 1

ˆ ˆWRSS ( )
n n

Wi i i Wi

i i

e w y y
= =

= = −∑ ∑    

 The second advantage of this choice is that the variance of the  i th residual can be 
shown to depend on the weight  w  

 i 
  only through its leverage value.  

  4.1.5 The Use of Weighted Least Squares 

 The weighted least squares technique is commonly used in the important special 

case when  Y  
 i 
  is the average or the median of  n  

 i 
  observations so that   

1
Var ( )

i

i

Y
n

∝   . 
In this case we take w

i 
= n

i
.

 Table 4.2    Predictions and 95% prediction intervals for the number of crews  

  x , Crews  Prediction  Lower limit  Upper limit 

 4 (transformed data)  16 = (4.003 2 )  8 = (2.790 2 )  27 = (5.217 2 ) 
 4 (raw data WLS)  16 = (3.244   ×   4.97)  6 = (1.286   ×  4.97)  26 = (5.202   ×   4.97) 
 16 (transformed data)  61 =(7.806 2 )  43 =(6.582 2 )  82 = (9.031 2 ) 

 16 (raw data WLS)  62 = (5.167   ×   12.00)  38 = (3.199   ×   12.00)  87 = (7.136   ×   12.00) 
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  However, many situations exist in which the variance is not constant and in 
which it is not straightforward to determine the correct model for the variance. In 
these situations, the use of weighted least squares is problematic.   

  4.2 Exercises  

    1.    A full professor of statistics at a major US university is interested in estimating 
the third quartile of salaries for full professors with 6 years of experience in that 
rank. Data, in the form of the 2005–2006 Salary Report of Academic Statisticians, 
are available at   http://www.amstat.org/profession/salaryreport_acad2005–6.pdf     
(accessed March 12, 2007) (Table  4.3  ).        Using weighted least squares, estimate 
the 2005–2006 third quartile for salary of full professors with 6 years of 
experience.  

   2.    Consider regression though the origin (i.e., straight line regression with popula-
tion intercept known to be zero) with   2 2Var( | )

i i i
e x x= σ   . The corresponding 

regression model is   ( 1,..., )
i i i

Y x e i nb= + =   . 

 Find an explicit expression for the weighted least squares estimate of b  .

   3.    The Sunday April 15, 2007 issue of the Houston Chronicle included a section 
devoted to real estate prices in Houston. In particular, data are presented on the 
2006 median price per square foot for 1922 subdivisions. The data 
(HoustonRealEstate.txt) can be found on the book web site. Interest centers on 
developing a regression model to predict     

     Y  
 i 
  = 2006 median price per square foot    

 from 

      x  
1 i 
  =  %NewHomes (i.e., of the houses that sold in 2006, the percentage that were 

built in 2005 or 2006)  
    x  

2 i 
  =  %Foreclosures (i.e., of the houses that sold in 2006, the percentage that 

were identified as foreclosures)    

  Table 4.3    Data on salaries    

 Years of experience as a full professor  Sample size,  n
 
 
 i 
   Third quartile ($) 

 0  17  101,300 
 2  33  111,303 
 4  19  98,000 
 6  25  124,000 
 8  18  128,475 
 12  60  117,410 
 17  58  115,825 
 22  31  134,300 
 28  34  128,066 
 34  19  164,700 
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 for the  i  = 1, … 1922 subdivisions. 
 The first model considered was  

   
0 1 1 2 2i i i

Y x x eb b b= + + +    (4.6)   

 Model (4.6) was fit used weighted least squares with weights, 

   w
i
 = n

i
   

 where 
  n  

 i 
  = the number of homes sold in subdivision  i  in 2006. 

 Output from model (4.6), in the form of plots, appears in Figure 4.1. 

    (a)    Explain it is necessary to use weighted least squares to fit model (4.6) and why  
   w

i
 = n

i
    is the appropriate choice for the weights.  

   (b)    Explain why (4.6) is not a valid regression model.  
   (c)     Describe what steps you would take to obtain a valid regression model (Figure  4.1 ).              
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  Figure 4.1    Plots associated with model (4.6)       



   Chapter 5   

 Multiple Linear Regression        

 It is common for more than one factor to influence an outcome. Fitting regression 
models to data involving two or more predictors is one of the most widely used sta-
tistical procedures. In this chapter we consider multiple linear regression problems 
involving modeling the relationship between a dependent variable,  Y  and two or more 
predictor variables  x  

1
 ,  x  

2
 ,  x  

3
 , etc. Throughout Chapter 5, we will assume that the mul-

tiple linear regression model under consideration is a valid model for the data. In the 
next chapter we will consider a series of tools to check model validity. 

  5.1 Polynomial Regression  

 We begin this chapter by looking at an important special case of multiple regres-
sion, known as polynomial regression. In this case the predictors are a single pre-
dictor,  x , and its polynomial powers ( x  2 ,  x  3 , etc.). In polynomial regression, we can 
display the results of our multiple regression on a single two-dimensional graph. 

  Example: Modeling salary from years of experience  

 This example is taken from Tryfos (1998, pp. 5–7). According to Tryfos: 

 Professional organizations of accountants, engineers, systems analysts and others regularly 
survey their members for information concerning salaries, pensions, and conditions of 
employment. One product of these surveys is the so-called salary curve…which relates 
salary to years of experience.   
 The salary curve is said to show the “normal” or “typical” salary of professionals with a 
given number of years experience. It is of considerable interest to members of the profession 
who like to know where they stand among their peers. It is also valuable to personnel depart-
ments of businesses considering salary adjustments or intending to hire new professionals.   

 We want to develop a regression equation to model the relationship between  Y , 
salary (in thousands of dollars) and  x , the number of years of experience and find a 
95% prediction interval for  Y  when  x  = 10. The 143 data points are plotted in Figure 
 5.1  and can be found on the book web site in the file profsalary.txt. 

 It is clear from Figure  5.1  that the relationship between salary and years of experi-
ence is nonlinear. For illustrative purposes we will start by fitting a simple linear model 

S.J. Sheather, A Modern Approach to Regression with R, 125
DOI: 10.1007/978-0-387-09608-7_5, © Springer Science + Business Media LLC 2009
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126 5 Multiple Linear Regression

and examining the associated regression diagnostics. The inadequacy of the straight-
line model and potentially how to overcome it will be seen from this analysis. 

 We begin by considering the simple linear regression model 

     b b= + +0 1Y x e     (5.1)

    where  Y  = salary and  x  = years of experience. Figure  5.2  shows a plot of the stand-
ardized residuals from model (5.1) against  x .    

 A curved pattern resembling a quadratic is clearly evident in Figure  5.2 . This 
suggests that we add a quadratic term in  x  to model (5.1) and thus consider the fol-
lowing polynomial regression model 

     
b b b= + + +2

0 1 2Y x x e     (5.2)

 where  Y  = salary and  x  = years of experience. Figure  5.3  contains a scatter plot of 
salary against years of experience. The curve in Figure  5.3  is just the least squares 
fit of model (5.2).    

 Figure  5.4  shows a plot of the standardized residuals from model (5.2) against  x . 
The random pattern in Figure  5.4  indicates that model (5.2) is a valid model for the 
salary data.    

 Figure  5.5  shows a plot of leverage from model (5.2) against  x . Marked on the 
plot as a horizontal dashed line is the cut-off value for a point of high leverage  1   , 

  Figure 5.1    A plot of the professional salary data (prefsalary.txt)       
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  1 In the next chapter we shall see that the cut-off is 2( p  + 1)/ n  when there are  p  predictors. 
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  Figure 5.2    A plot of the standardized residuals from a straight-line regression model       
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  Figure 5.3    A plot of salary against experience with a quadratic fit added       
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namely,   = =6 6 0.042
143n

  . It is evident from Figure  5.5  that the three smallest 
and the two largest  x -values are leverage points.    
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  Figure 5.4    A plot of the standardized residuals from a quadratic regression model       

  Figure 5.5    A plot of leverage against  x , years of experience       
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 Next we look at the four summary diagnostic plots produced by R in Figure 5.6. 
The bottom right plot shows that none of the points of high leverage have standard-
ized residuals with absolute value of 2 or higher. The bottom left-hand plot is 
consistent with the errors in model (5.2) having constant variance. Thus (5.2) is a 
valid model. 

 The output from R associated with fitting model (5.2) is given below. The last 
part of the output gives the predicted salary (in thousands of dollars) and a 95% 
prediction interval for 10 years of experience. In this case the 95% prediction inter-
val is ($52,505, $63,718). 

  Regression output from R  

      Call:

lm(formula = Salary ~ Experience + I(Experience^2))

Coefficients:

 Estimate Std. Error t value Pr(>|t|)
(Intercept) 34.720498 0.828724 41.90 <2e-16 ***
Experience 2.872275 0.095697 30.01 <2e-16 ***
I(Experience^2) -0.053316 0.002477 -21.53 <2e-16 ***
---

   Figure 5.6  Diagnostic plots produced by R       
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Residual standard error: 2.817 on 140 degrees of freedom
Multiple R-Squared: 0.9247, Adjusted R-squared:0.9236
F-statistic: 859.3 on 2 and 140 DF, p-value:< 2.2e-16
 fit lwr upr
[1,] 58.11164 52.50481 63.71847

  5.2 Estimation and Inference in Multiple Linear Regression  

 In the straight-line regression model, we saw that 

   0 1E( | )Y X x xb b= = +
    

 where the parameters   b
0
   and   b

1
   determine the intercept and the slope of a specific 

straight line, respectively. 
 Suppose in this case that   Y

1
 ,Y

2
 ,...,Y

n
    are independent realizations of the random 

variable  Y  that are observed at the values   x
1
 ,x

2
 ,...,x

n
    of a random variable  X . Then 

for   i = 1,...,n  

   0 1E( | )
i i i i i i i

Y Y X x e x eb b= = + = + +
    

 where 
  e

i
 =      random fluctuation (or error) in   Y

i
   such that   E(e

i
 |X) = 0  . 

 In this case the response variable  Y  is predicted from one predictor (or explana-
tory) variable  X  and the relationship between  Y  and  X  is linear in the parameters   b

0
   

and    b
1
  . 

 In the multiple linear regression model 

   1 1 2 2 0 1 1 2 2E( | , ,..., ) ...
p p p p

Y X x X x X x x x xb b b b= = = = + + + +
    

 Thus, 

   0 1 1 2 2 ...
i i i p pi i

Y x x x eb b b b= + + + + +
    

 where 
  e

i
 =     random fluctuation (or error) in   Y

i
   such that   E(e

i
 | X) = 0  . In this case the 

response variable  Y  is predicted from  p  predictor (or explanatory) variables  X  
1
 ,  X  

2
 , 

…,  X  
 p 
  and the relationship between  Y  and  X  

1
 ,  X  

2
 , …,  X  

 p 
  is linear in the parameters  

  b
0
, b

1
, b

2
,..., b

p
  . 

 An example of a multiple linear regression model is between
    Y  = salary    

 and

    x  
 1 
 =  x , years of experience  

   x  
 2 
 =  x   2  , (years of experience) 2     
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  Least squares estimates  

 The least squares estimates of   0 1 2, , ,...,
p

b b b b    are the values of   
0 1 2, , ,...,

p
b b b b    for 

which the sum of the squared residuals, 

   

2 2 2
0 1 1 2 2

1 1 1

ˆ ˆRSS ( ) ( ... )
n n n

i i i i i i p pi

i i i

e y y y b b x b x b x
= = =

= = − = − − − − −∑ ∑ ∑
    

 is a minimum. For RSS to be a minimum with respect to   0 1 2, , ,...,
p

b b b b   
we require 

   0 1 1 2 2
10

RSS
2 ( ... ) 0

n

i i i p pi

i

y b b x b x b x
b =

= − − − − − − =∑∂
∂    

   1 0 1 1 2 2
11

RSS
2 ( ... ) 0

n

i i i i p pi

i

x y b b x b x b x
b =

= − − − − − − =∑∂
∂    

.

.

   
0 1 1 2 2

1

RSS
2 ( ... ) 0

n

pi i i i p pi

ip

x y b b x b x b x
b =

= − − − − − − =∑∂
∂

    

 This gives a system of ( p  + 1) equations in ( p  + 1) unknowns. In practice, a 
computer package is needed to solve these equations and hence obtain the least 
squares estimates,   0 1 2

ˆ ˆ ˆ ˆ, , ,...,
p

b b b b   . 

  Matrix formulation of least squares  

 A convenient way to study the properties of the least squares estimates, 
  

0 1 2
ˆ ˆ ˆ ˆ, , ,...,

p
b b b b    is to use matrix and vector notation. Define the   (n × 1)   vector,   Y  , 
the   n × (p + 1)   matrix,   X  , the   (p + 1) × 1   vector,   b   of unknown regression parameters 
and the   (n × 1)   vector,   e   of random errors by 

   

11 1 01 1

21 2 12 2

1

1

1
, , ,

1

p

p

pn nn np

x xy e

x xy e

y ex x

b

b
b

b

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟= = = =
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

Y X e

⋯

⋯

⋮⋮ ⋮⋮ ⋮

⋯
    

 We can write the multiple linear regression model in matrix notation as 

     b= +Y X e     (5.3)

 In addition, let   
i

x ¢    denote the  i th row of the matrix   X  . Then 

   i

¢x     = (1 x
i1
 x

i2
 ... x

ip
) 

 is a 1 × (p + 1 ) row vector      which allows us to write 
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   0 1 1 2 2E( | ) ...
p p i

Y X x x x x
¢b b b b b= = + + + + = x

    

 The residual sum of squares as a function of   b   can be written in matrix form as 

     
( ) ( )RSS( )b b b= − ′ −Y X Y X

    
(5.4)

 Noting that   ( )¢ ¢ ¢=AB B A    and that   ¢ ¢=B A A B    when the result is   (1 × 1)  , 
expanding this last equation gives 

   

( ) ( )RSS( )

( ) 2

b ¢ b ¢ b ¢ b b ¢

¢ b¢ ¢ b ¢ b

= + − −
= + −

Y Y X X Y X X Y

Y Y X X Y X
    

 To find the least squares estimates we differentiate this last equation with respect 
to   b  , equate the result to zero and then cancel out the 2 common to both sides. This 
gives the following matrix form of the normal equations 

     ( )b¢ ¢=X X X Y     (5.5)

 Assuming that the inverse of the matrix   (X¢X)   exists, the least squares estimates 
are given by 

     
1ˆ ( )¢ ¢b −= X X X Y     (5.6)

 The fitted or predicted values are given by 

     
ˆˆ b=Y X

    (5.7)
 and the residuals are given by 

     
ˆˆˆ b= − = −e Y XY Y

    (5.8)
  Special case: simple linear regression  
 Consider the regression model 

   b= +Y X e   . 

 For simple linear regression the matrix,   X   is given by 

   

1

2

1

1

1
n

x

x

x

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎝ ⎠

X
⋮ ⋮

    

 Thus, 
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¢
=

=

⎛ ⎞ ⎛ ⎞
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 Taking the inverse of   (X¢X)   gives 

   

( )
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 Putting all these pieces together gives 
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 matching the results in Chapter 2. 

  Properties of least squares estimates  
 Consider the regression model given by (5.3), i.e., 

   
b= +Y X e     

 with   s= 2Var( )e I    where   I   is the   (n × n)   identity matrix. 
 From (5.6), the least squares estimates are given 

 
1ˆ ( )¢ ¢b −= X X X Y       

 We next derive the conditional mean and variance of the least squares 
estimates: 

   

( ) ( )
( )

1

1

1

ˆE | ( ) |

( ) |

( )

E

E

¢ ¢

¢ ¢

¢ ¢

b

b

b

−

−

−

=

=
=
=

X X X X Y X

X X X Y X

X X X X

   

   

( ) ( )
( )

1

1 1

1 2 1

2 1 1

2 1

ˆVar | Var ( ) |

( ) Var | ( )

( ) ( )

(

 

(

(

 

) )

)

¢ ¢

¢ ¢ ¢

¢ ¢s ¢

s ¢ ¢ ¢

b

s ¢

−

− −

− −

− −

−

=

=
=
=
=

X X X X X X

X X X IX X X

X X

X X X X Y X

Y X

X X X X

X X     
 using the fact that   (X¢X)-1   is a symmetric matrix. 
  Reality check:  simple linear regression 

 We saw earlier that for the case of simple linear regression 

   

( )
2

1

1

1
1

1

n

i

i

x x
n

SXX
x

¢
−

=

⎛ ⎞
−⎜ ⎟=

⎜ ⎟
⎝ − ⎠

∑
X X

    

 Thus, for the slope of the fitted line 

   

2

1
ˆVar( )

SXX

s
b =

    
 as we found in Chapter 2. 

  Residual sum of squares  
 From (5.4), the residual sum of squares as a function of the least squares estimates 
  b̂    can be written in matrix form as 
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( )( )

=

′= = − − = = ∑ 2

1

ˆ ˆ ˆ ˆ ˆ ˆRSS RSS( )
n

i

i

eb b b ¢Y X Y X e e

    

 Estimating the error variance 

 It can be shown that 

   

2 2

1

RSS 1
ˆ

1 1

n

i

i

S e
n p n p =

= =
− − − − ∑

    

 is an unbiased estimate of   s 2  . 

  Confidence intervals and tests of significance  

 Assuming that the errors are normally distributed with constant variance, it can be 
shown that for  i  = 0, 1, …,  p 

   
1

ˆ
 

ˆse( )

i i

i n p
T t~

b b

b
− −

−
=

    

 where   ˆse( )
i

b    is the estimated standard deviation of   ˆ
i

b   obtained by replacing   s   by 
 S . Note that ˆse( )

i
b      can be obtained from R. 

 Notice that the degrees of freedom satisfy the formula: 

 Degrees of freedom = Sample size – Number of mean parameters estimated. 

 In this case we are estimating  p  + 1 such parameters, namely,   0 1, ,...,
p

b b b   . 

  Analysis of variance approach to testing whether there is a linear association 

between Y and a subset/all of the predictors  
 There is a linear association between  Y  and a subset/all of  X  

1
 ,  X  

2
 , …,  X  

 p 
  if 

   
b b b b= + + + + +0 1 1 2 2 ...

p p
Y x x x e

    

 and some/all of the   0
i

b ≠     (i  = 1, 2, …,  p ). Thus we wish to test  

  0 1 2: ... 0
p

H b b b= = = =    against 

  : at least some of the 0
A i

H b ≠   . 

 Once again we define the following terminology:

   Total corrected sum of squares of the  Y ’s, 

   

2SST ( )
n

i

i

SYY y y= = −∑
     

  Residual sum of squares,   2ˆRSS ( )
n

i i

i

y y= −∑     

  Regression sum of squares (i.e., sum of squares explained by the regression model), 

  
2ˆSSreg ( )

n

i

i

y y= −∑
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 It can be shown that 

 SST = SSreg +  RSS
   Total sample Variability explained by Unexplained (or error)

variability the model  variability

= +     

 If 

  
b b b b= + + + + +0 1 1 2 2 ...

p p
Y x x x e

   and 

  ≠at least  one of the 0
i

b
  

then RSS should be “small” and SSreg should be “close” to SST. But how small is 
“small” and how close is “close”? To test  

  0 1 2: ... 0
p

H b b b= = = =    against 

  : at least some of the 0
A i

H b ≠    

 we can use the test statistic 

   

SSreg /

RSS / ( 1)

p
F

n p
=

− −     

 since RSS has ( n  –  p  – 1) degrees of freedom and SSR has  p  degrees of freedom. 
Under the assumption that   1 2, ,...,

n
e e e    are independent and normally distributed, it 

can be shown that  F  has an  F  distribution with  p  and  n  –  p  – 1 degrees of freedom 
when   H

0
   is true. The usual way of setting out this test is to use the following: 

 Analysis of variance table  

 Source of 
variation 

 Degrees of 
freedom (df) 

 Sum of squares 
(SS)  Mean square (MS)  F 

 Regression   p   SSreg  SSreg/ p     
SSreg /

RSS / ( 1)

p
F

n p
=

− −    

 Residual   n – p  – 1  RSS   S   2   =  RSS/
( n  –  p  – 1) 

  

 Total   n  – 1  SST  = SYY      

 Notes:

   1.     R  2 , the coefficient of determination of the regression line, is defined as the pro-
portion of the total sample variability in the  Y ’s explained by the regression 
model, that is, 

   2 SSreg RSS
1

SST SST
R = = −         



5.2 Estimation and Inference in Multiple Linear Regression 137

 Adding irrelevant predictor variables to the regression equation often 
increases  R  2 . To compensate for this one can define an adjusted coefficient 
of determination,   2

adjR   

 

− −
= −

−
2
adj

RSS / ( 1)
1

SST / ( 1)

n p
R

n   

 Note that   2 RSS

1
S

n p
=

− −
   is an unbiased estimate of 2 Var( ) Var( )

i i
e Ys = =

while   SST / ( 1)n −    is an unbiased estimate of   2 Var( )
i

Ys =    when   1 ... 0
p

b b= = =   . 
Thus, when comparing models with different numbers of predictors one should 
use   2

adjR    and not  R  2 .

   2.    The  F -test is always used first to test for the existence of a linear association 
between  Y  and ANY of the  p x -variables. If the  F -test is significant then a natural 
question to ask is 

  For which of the p x-variables is there evidence of a linear association with Y?        
 To answer this question we could perform  p  separate  t -tests of   0 1: 0H b =   . 
 However, as we shall see later there are problems with interpreting these  t -tests 
when the predictor variables are highly correlated. 

  Testing whether a specified subset of the predictors have regression coefficients 

equal to 0  
Suppose that we are interested in testing 

H
0
 : b

1 
= b

2
 = … = b

k 
= 0 where k < p

 i.e., Y = b
0 
+ b

k+1
x

k+1
 + … + b

p
x

p
 + e (reduced model)  

 against 
  H

A
 : H

0
 is not true    

 i.e.,   Y = b
0
 + b

1 
x

1
 + … + b

k 
x

k
 + b

k+1
x

k+1
 + … + b

p
x

p
+ e   (full model) 

 This can be achieved using an F-test. Let RSS(Full) be the residual sum of squares 
under the full model (i.e., the model which includes all the predictors, i.e.,  H  

 A 
 ) and 

RSS(Reduced) be the residual sum of squares under the reduced model (i.e., the 
model which includes only the predictors thought to be non-zero, i.e.,  H  

0
 ). Then the 

F-statistic is given by 

  

( ) ( )

( )
( )

f f

RSS full f

RSS reduced RSS full

RSS full

reduced full

full

RSS(reduced) RSS(full) d d

( ) d

( ) ( )

( ) 1

F

k

n p

− −
=

−
=

− −
   

 since the reduced model has  p  + 1 –  k  predictors and 

  [n – (p + 1 – k)] – [n – (p + 1)] = k.   

 This is called a  partial     F-test.  
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  Menu pricing in a new Italian restaurant in New York City (cont.)  
 Recall from Chapter 1 that you have been asked to produce a regression model to 
predict the price of dinner. Data from surveys of customers of 168 Italian restau-
rants in the target area are available. The data are in the form of the average of 
customer views on

    Y  = Price = the price (in $US) of dinner (including 1 drink & a tip)  
   x  

 1 
 = Food = customer rating of the food (out of 30)  

   x  
 2 
 = Décor = customer rating of the decor (out of 30)  

   x  
 3 
 = Service = customer rating of the service (out of 30)  

   x  
 4 
 = East = dummy variable = 1 (0) if the restaurant is east (west) of Fifth Avenue    

 The data are given on the book web site in the file nyc.csv. The source of the 
data is the following restaurant guide book 

  Zagat Survey 2001: New York City Restaurants , Zagat, New York 
 In particular you have been asked to

    (a)    Develop a regression model that  directly predicts  the price of dinner (in dollars) 
using a subset or all of the 4 potential predictor variables listed above.  

    (b)    Determine which of the predictor variables Food, Décor and Service has the 
largest estimated effect on Price? Is this effect also the most statistically 
significant?  

    (c)    If the aim is to choose the location of the restaurant so that the price achieved 
for dinner is maximized, should the new restaurant be on the east or west of 
Fifth Avenue?  

    (d)    Does it seem possible to achieve a price premium for “setting a new standard 
for high-quality service in Manhattan” for Italian restaurants?     

 Since interest centers on developing a regression model that directly predicts 
price, we shall begin by considering the following model: 

 0 1 1 2 2 3 3 4 4Y x x x x eb b b b b= + + + + +    (5.9)     

 At this point we shall assume that all the necessary assumptions hold. In particu-
lar, we shall assume that (5.9) is a valid model for the data. We shall check these 
assumptions for this example in the next chapter and at that point identify any out-
liers.   Given below is some output from R after fitting model (5.9): 

  Regression output from R  

       Call:
lm(formula = Price ~ Food + Decor + Service + East)
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -24.023800 4.708359 -5.102 9.24e-07 ***
Food 1.538120 0.368951 4.169 4.96e-05 ***
Decor 1.910087 0.217005 8.802 1.87e-15 ***
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Service -0.002727 0.396232 -0.007 0.9945
East 2.068050 0.946739 2.184 0.0304 *
---
Signif. codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’0.1 ‘ ‘ 1

Residual standard error: 5.738 on 163 degrees of freedom
Multiple R-Squared: 0.6279, Adjusted R-squared:0.6187
F-statistic: 68.76 on 4 and 163 DF, p-value: <2.2e-16

    (a)    The initial regression model is 

  Price = – 24.02 + 1.54 Food + 1.91 Decor – 0.003 Service + 2.07 East   

 At this point we shall leave the variable Service in the model even though its 
regression coefficient is not statistically significant.  

    (b)    The variable Décor has the largest effect on Price since its regression coeffi-
cient is largest. Note that Food, Décor and Service are each measured on the 
same 0 to 30 scale and so it is meaningful to compare regression coefficients. 
The variable Décor is also the most statistically significant since its  p -value is 
the smallest of the three.  

    (c)    In order that the price achieved for dinner is maximized, the new restaurant 
should be on the east of Fifth Avenue since the coefficient of the dummy vari-
able is statistically significantly larger than 0.  

    (d)    It does not seem possible to achieve a price premium for “setting a new 
standard for high quality service in Manhattan” for Italian restaurants since 
the regression coefficient of Service is not statistically significantly greater 
than zero.     

 Given below is some output from R after dropping the predictor Service from 
model (5.9): 

  Regression output from R  

      Call:
lm(formula = Price ~ Food + Decor + East)
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -24.0269 4.6727 -5.142 7.67e-07 ***
Food 1.5363 0.2632 5.838 2.76e-08 ***
Decor 1.9094 0.1900 10.049 <2e-16 ***
East 2.0670 0.9318 2.218 0.0279 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

Residual standard error: 5.72 on 164 degrees of freedom
Multiple R-Squared: 0.6279, Adjusted R-squared:0.6211
F-statistic: 92.24 on 3 and 164 DF, p-value: < 2.2e-16
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 The final regression model is 

  Price = – 24.03 + 1.54 Food + 1.91 Decor + 2.07 East   

 Comparing the last two sets of output from R, we see that the regression coeffi-
cients for the variables in both models are very similar. This does  not  always occur. 
In fact, we shall see that dropping predictors from a regression model can have a 
dramatic effect on the coefficients of the remaining predictors. We shall discuss this 
and other issues related to choosing predictor variables for a “final” model in 
Chapter 7.  

  5.3 Analysis of Covariance  

 Consider the situation in which we want to model a response variable,  Y  based on 
a continuous predictor,  x  and a dummy variable,  d . Suppose that the effect of  x  on 
 Y  is linear. This situation is the simplest version of what is commonly referred as 
 Analysis of Covariance , since the predictors include both quantitative variables 
(i.e.,  x ) and qualitative variables (i.e.,  d ). 

  Coincident regression lines : The simplest model in the given situation is one in 
which the dummy variable has no effect on  Y , that is,

   0 1Y x eb b= + +     

 and the regression line is exactly the same for both values of the dummy 
variable. 

  Parallel regression lines : Another model to consider for this situation is one in 
which the dummy variable produces only an additive change in  Y , that is, 

   
0 1

0 1 2
0 2 1

when 0
when 1

Y x e d
Y x d e

Y x e d

b b
b b b

b b b
= + + == + + + = 〈 = + + + =     

 In this case, the regression coefficient   b
2
   measures the additive change in  Y  due to 

the dummy variable. 
  Regression lines with equal intercepts but different slopes :   A third model to 

consider for this situation is one in which the dummy variable only changes the size 
of the effect of  x  on  Y , that is, 

   
0 1

0 1 3
0 1 3

when 0
when 1

Y x e d
Y x d x e

Y x e d

b b
b b b

b b b⎛ ⎞
⎜ ⎟⎝ ⎠

= + + == + + × + = 〈
= + + + =     

  Unrelated regression lines : The most general model is appropriate when the 
dummy variable produces an additive change in  Y  and also changes the size of the 
effect of  x  on  Y . In this case the appropriate model is 
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0 1
0 1 2 3

0 2 1 3

when 0
when 1

Y x e d
Y x d d x e

Y x e d

b b
b b b b

b b b b⎛ ⎞
⎜ ⎟⎝ ⎠

= + + == + + + × + = 〈
= + + + + =

    

 In the unrelated regression lines model, the regression coefficient   b
2
   measures the 

additive change in  Y  due to the dummy variable, while the regression coefficient   b
3
   

measures the change in the size of the effect of  x  on  Y  due to the dummy variable. 

  Stylized example: Amount spent on travel  
 This stylized example is based on a problem in a text on business statistics. The 
background to the example is as follows: 

 A small travel agency has retained your services to help them better understand two impor-
tant customer segments. The first segment, which we will denote by A, consists of those 
customers who have purchased an adventure tour in the last twelve months. The second 
segment, which we will denote by C, consists of those customers who have purchased a 
cultural tour in the last twelve months. Data are available on 925 customers (i.e. on 466 
customers from segment A and 459 customers from segment C). Note that the two seg-
ments are completely separate in the sense that there are no customers who are in both 
segments. Interest centres on  identifying any differences between the two segments in terms 

of the amount of money spent in the last twelve months . In addition, data are also available 
on the age of each customer, since age is thought to have an effect on the amount spent.   

 The data in Figure  5.7  are given on the book web site in the file travel.txt. The 
first three and the last three rows of the data appear in Table  5.1 .          

 It is clear from Figure  5.7  that the dummy variable for segment changes the size 
of the effect of Age,  x  on Amount Spent,  Y . We shall also allow for the dummy 
variable for Segment to produce an additive change in  Y . In this case the appropriate 
model is what we referred to above as  Unrelated regression lines 

   
0 1

0 1 2 3
0 2 1 3

when 0
when 1

Y x e C
Y x C C x e

Y x e C

b b
b b b b

b b b b⎛ ⎞
⎜ ⎟⎝ ⎠

= + + == + + + × + = 〈
= + + + + =     

 where 
  Y  = amount spent;  x  = Age; and  C  is a dummy variable which is 1 when the 

customer is from Segment C and 0 otherwise (i.e., if the customer is in Segment A). 
The output from R is as follows: 

  Regression output from R  

        Call:
lm(formula = Amount ~ Age + C + C:Age)
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1814.5445 8.6011 211.0 <2e-16 ***
Age -20.3175 0.1878 -108.2 <2e-16 ***
C -1821.2337 12.5736 -144.8 <2e-16 ***
Age:C 40.4461 0.2724 148.5 <2e-16 ***

Residual standard error: 47.63 on 921 degrees of freedom
Multiple R-Squared: 0.9601, Adjusted R-squared:0.9599
F-statistic: 7379 on 3 and 921 DF, p-value:<2.2e-16
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 Notice that all the regression coefficients are highly statistically significant. 
Thus, we shall use as a final model 

   
0 1

0 1 2 3

0 2 1 3

ˆ ˆ when C 0ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ when C 1

Y x
Y x C C x

Y x

b b
b b b b

b b b b
⎛ ⎞
⎜ ⎟
⎜ ⎟⎝ ⎠

= + == + + + × = 〈
= + + + =     

 For customers in segment A (i.e.,  C  = 0) our model predicts 

  Amount Spent = $1814.54 – $20.32 × Age   

 while for customers in segment C (i.e.,  C  = 1) our model predicts 

  Amount Spent = – $6.69 + $20.13 × Age   

 Table 5.1    Amount spent on travel 
for two market segments (A & C)  

 Amount  Age  Segment  C 

 997  44  A  0 
 997  43  A  0 
 951  41  A  0 
. . . .
 1,111  57  C  1 
 883  43  C  1 
 1,038  53  C  1 

  Figure 5.7    A scatter plot of Amount Spent versus Age for segments A and C       
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 since 

  1814.5445 + (– 1821.2337) = – 6.69   

 and 

  – 20.3175 + 40.4461 = 20.13.   

 Thus, in segment A (i.e., those customers who have purchased an adventure tour) 
the amount spent decreases with Age while in Segment C (i.e., those customers 
who have purchased a cultural tour) the amount spent increases with Age. 

 Finally, imagine that we are interested in an overall test of 

  H
0
 : b

2
 = b

3
 = 0   

 i.e.,   Y = b
0
 + b

1
x

1
 + e   (reduced model:  coincident regression lines :)   

against 

  H
A
 :H

0
 is not true   

 i.e.,   Y = b
0
 + b

1
x + b

2
C + b

3
C × x + e   (full model:  unrelated lines ) 

 The fit under the full model is given on a previous page, while the fit under the 
reduced model appears next: 

  Regression output from R  

        Call:
lm(formula = Amount ~ Age)
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 957.9103 31.3056 30.599 <2e-16 ***
Age -1.1140 0.6784 -1.642 0.101
---
Residual standard error: 237.7 on 923 degrees of freedom
Multiple R-Squared: 0.002913, Adjusted R-squared: 0.001833
F-statistic: 2.697 on 1 and 923 DF, p-value: 0.1009

 The test can be achieved using a partial F-test. Let RSS(Full) be the residual sum 
of squares under the full model (i.e., the model which includes all the predictors, 
i.e.,  H  

 A 
 ) and RSS(Reduced) be the residual sum of squares under the reduced model 

(i.e., the model which includes only the predictors thought to be nonzero, i.e.,  H  
0
 ). 

Then the F-statistic is given by 

   

( ) ( )reduced full

full

RSS(reduced) RSS(full) df df
=

RSS(full) df
F

− −

    

 Given below is the output from R associated with this F-statistic: 
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144 5 Multiple Linear Regression

  Regression output from R  

        Analysis of Variance Table
Model 1: Amount ˜ Age
Model 2: Amount ˜ Age + C + C:Age

 Res. Df RSS Df Sum of Sq F Pr(>F)
1 923 52158945
2 921 2089377 2 50069568 11035 <2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘‘1

 Calculating by hand we find that 

  

( ) ( )52158945 2089377 923 921 25034784
11035

2089377 921 2268.6
F

− −
= = =

   

 which agrees with the result from the R-output. 
 As expected there is very strong evidence against the reduced model in favour 

of the full model. Thus, we prefer the unrelated regression lines model to the coin-
cident lines model. 

  Menu pricing in a new Italian restaurant in New York City (cont.)  
 Recall from Chapter 1 and earlier in Chapter 5 that the data are in the form of the 
average of customer views on

    Y  = Price = the price (in $US) of dinner (including one drink and a tip)  
   x  

1
  = Food = customer rating of the food (out of 30)  

   x  
2
  = Décor = customer rating of the decor (out of 30)  

   x  
3
  = Service = customer rating of the service (out of 30)  

   x  
4
  = East = dummy variable = 1 (0) if the restaurant is east (west) of Fifth Avenue    

 Earlier in Chapter 5 we obtained what we referred to as the “final regression 
model,” namely 

  Price = –24.03 + 1.54 Food + 1.91 Decor + 2.07 East   

 In particular, the variable Service had very little effect on Price and was omitted 
from the model. 

 When the young New York City chef, who plans to create the new Italian res-
taurant in Manhattan, is shown your regression model there is much discussion of 
the implications of the model. In particular, heated debate focuses on the statistical 
insignificance of the predictor variable Service, since the stated aims of the restau-
rant are to provide the highest quality Italian food utilizing state-of-the-art décor 
while setting a new standard for high-quality service in Manhattan. The general 
consensus from the other members of the team supporting the chef is that the model 
is too simple to reflect the reality of Italian restaurants in Manhattan. In particular, 
there is general consensus amongst the team that restaurants on the east of Fifth 
Avenue are very different from those on the west side with service and décor 
thought to be more important on the east of Fifth Avenue. As such you have been 
asked to consider different models for the East and West. 
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5.3 Analysis of Covariance 145

 In order to investigate whether the effect of the predictors depends on the 
dummy variable East, we shall consider the following model which is an extension 
of the  unrelated regression lines  model to more than one predictor variable: 

  

East

East East

0 1 1 2 2 3 3 4

5 1 6 2 7 3East (Full)

Y x x x

x x x e

b b b b b

b b b

= + + + +

+ × + × + × +
   

 where  x  
1
  = Food,  x  

2
  = Décor and  x  

3
  = Service. Regression output from R showing 

the fit of this model appears next: 

  Regression output from R  

        Call:
lm(formula = Price ~ Food + Decor + Service + East +
Food:East + Decor:East + Service:East)
Coefficients:
 Estimate  Std. Error  t value  Pr(>|t|)
(Intercept) -26.9949 8.4672 -3.188 0.00172 **
Food 1.0068 0.5704 1.765 0.07946 .
Decor 1.8881 0.2984 6.327 2.40e-09 ***
Service 0.7438 0.6443 1.155 0.25001
East 6.1253 10.2499 0.598 0.55095
Food:East 1.2077 0.7743 1.560 0.12079
Decor:East -0.2500 0.4570 -0.547 0.58510
Service:East -1.2719 0.8171 -1.557 0.12151
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’0.1 ‘ ‘ 1
Residual standard error: 5.713 on 160 degrees of freedom
Multiple R-Squared: 0.6379,     Adjusted R-squared:0.622
F-statistic: 40.27 on 7 and 160 DF, p-value: <2.2e-16

 Notice how none of the regression coefficients for the interaction terms are sta-
tistically significant. However, both the interactions between Food and East and 
Service and East have  p -values equal to 0.12. 

 We next compare the full model above with what we previously called the 
“final” model. We consider an overall test of 

  H
0
 : b

3
 = b

5
 = b

6
 = b

7
 = 0   

 i.e.,   Y = b
0
 + b

1
x

1
 + b

2
x

2
 + b

4
 East + e (Reduced   )

 against 

  H
A
 : H

0
 is not true   

 i.e.,       

0 1 1 2 2 3 3 4

5 1 6 2 7 3

East

East East East (Full)

Y x x x

x x x e

b b b b b

b b b

= + + + +

+ × + × + × +

 The fit under the full model is given above, while the fit under the reduced model 
appears next. 
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146 5 Multiple Linear Regression

  Regression output from R  

        Call:
lm(formula = Price ~ Food + Decor + East)
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -24.0269 4.6727 -5.142 7.67e-07 ***
Food 1.5363 0.2632 5.838 2.76e-08 ***
Decor 1.9094 0.1900 10.049 < 2e-16 ***
East 2.0670 0.9318 2.218 0.0279 *
---
Residual standard error: 5.72 on 164 degrees of freedom
Multiple R-Squared: 0.6279, Adjusted R-squared:0.6211
F-statistic: 92.24 on 3 and 164 DF, p-value:<2.2e-16

 The test of whether the effect of the predictors depends on the dummy variable 
East can be achieved using the following partial F-test: 

  

( ) ( )fullreduced

full

RSS(reduced) RSS(full) df df

RSS(full) df
F

− −
=

   

 Given below is the output from R associated with this F-statistic: 

  Regression output from R  

        Analysis of Variance Table
Model 1: Price ~ Food + Decor + East
Model 2: Price ~ Food + Decor + Service + East + Food:East + 
Decor:East + Service:East
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 164 5366.5
2 160 5222.2 4 144.4 1.1057 0.3558

 Given the  p -value equals 0.36, there is little, if any, evidence to support the 
alternative hypothesis (i.e., the need for different models for the East and West). 
This means that we are happy to adopt the reduced model: 

  Y = b
0
 + b

1
x

1
 + b

2
x

2
 + b

4
 East + e (Reduced)    

  5.4 Exercises  

     1.    This problem is based on CASE 32 – Overdue Bills from Bryant and Smith 
(1995). Quick Stab Collection Agency (QSCA) is a bill-collecting agency that 
specializes in collecting small accounts. To distinguish itself from competing 
collection agencies, the company wants to establish a reputation for collecting 
delinquent accounts quickly. The marketing department has just suggested that 
QSCA adopt the slogan: “Under 60 days or your money back!!!!” 

 You have been asked to look at account balances. In fact, you suspect that the 
number of days to collect the payment is related to the size of the bill. If this is 
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5.4 Exercises 147

the case, you may be able to estimate how quickly certain accounts are likely to 
be collected, which, in turn, may assist the marketing department in determining 
an appropriate level for the money-back guarantee. 

 To test this theory, a random sample of accounts closed out during the months 
of January through June has been collected. The data set includes the initial size 
of the account and the total number of days to collect payment in full. Because 
QSCA deals in both household and commercial accounts in about the same 
proportion, an equal number have been collected from both groups. The first 48 
observations in the data set are residential accounts and the second 48 are com-
mercial accounts. The data can be found on the book web site in the file named 
overdue.txt. In this data set, the variable LATE is the number of days the pay-
ment is overdue, BILL is the amount of the overdue bill in dollars and TYPE 
identifies whether an account is RESIDENTIAL or COMMERCIAL. 

 Develop a regression model to predict LATE from BILL.  

   2.    On July 23, 2006, the  Houston Chronicle  published an article entitled “Reading: 
First-grade standard too tough for many”. The article claimed in part that “more 
students (across Texas) are having to repeat first grade. Experts attribute the 
increase partially to an increase in poverty.” The article presents data for each of 
61 Texas counties on

    Y  = Percentage of students repeating first grade  
   x =  Percentage of low-income students 

 for both 2004–2005 and 1994–1995. The data can be found on the book web site 
in the file HoustonChronicle.csv. Use analysis of covariance to decide whether:  

  (a) An increase in the percentage of low income students is associated with an 
increase in the percentage of students repeating first grade.  

  (b) There has been an increase in the percentage of students repeating first grade 
between 1994–1995 and 2004–2005  

  (c) Any association between the percentage of students repeating first grade and the 
percentage of low-income students differs between 1994–1995 and 2004–2005.     

   3.    Chateau Latour is widely acknowledged as one of the world’s greatest wine estates 
with a rich history dating back to at least 1638. The Grand Vin de Chateau Latour 
is a wine of incredible power and longevity. At a tasting in New York in April 2000, 
the 1863 and 1899 vintages of Latour were rated alongside the 1945 and the 1961 
vintages as the best in a line-up of 39 vintages ranging from 1863 to 1999 ( Wine 

Spectator , August 31, 2000). Quality of a particular vintage of Chateau Latour has 
a huge impact on price. For example, in March 2007, the 1997 vintage of Chateau 
Latour could be purchased for as little as $159 per bottle while the 2000 vintage of 
Chateau Latour costs as least $700 per bottle (  www.wine-searcher.com    ).     

 While many studies have identified that the timing of the harvest of the grapes 
has an important effect on the quality of the vintage, with quality improving the 
earlier the harvest. A less explored issue of interest is the effect of unwanted rain 
at vintage time on the quality of icon wine like Chateau Latour. This question 
addresses this issue. 
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 The Chateau Latour web site (  www.chateau-latour.com    ) provides a rich 
source of data. In particular, data on the quality of each vintage, harvest dates 
and weather at harvest time were obtained from the site for the vintages from 
1961 to 2004. An example of the information on weather at harvest time is given 
below for the 1994 vintage: 

 Harvest began on the 13th September and lasted on the 29th, frequently interrupted by 
storm showers. But quite amazingly the dilution effect in the grapes was very limited …. 
(  http://www.chateau-latour.com/commentaires/1994uk.html”    ; Accessed: March 16, 2007)   

 Each vintage was classified as having had “unwanted rain at harvest” (e.g., the 
1994 vintage) or not (e.g., the 1996 vintage) on the basis of information like that 
reproduced above. Thus, the data consist of: 

 Vintage = year the grapes were harvested 
 Quality – on a scale from 1 (worst) to 5 (best) with some half points 
 End of harvest – measured as the number days since August 31 
 Rain – a dummy variable for unwanted rain at harvest = 1 if yes. 
 The data can be found on the book web site in the file latour.csv. 
 The first model considered was: 

 

0 1 2

3

Quality End of Harvest Rain

End of Harvest Rain e

b b b

b

= + +
+ × +

   
(5.10)

     

 A plot of the data and the two regression lines from model (5.10) can be found 
in Figure  5.8 . In addition, numerical output appears below.

   (a)    Show that the coefficient of the interaction term in model (5.10) is statisti-
cally significant. In other words, show that the rate of change in quality rat-
ing depends on whether there has been any unwanted rain at vintage.  

   (b)    Estimate the number of days of delay to the end of harvest it takes to 
decrease the quality rating by 1 point when there is:

   (i)    No unwanted rain at harvest  
   (ii)    Some unwanted rain at harvest            

  Regression output from R  

             Call:
lm(formula = Quality ~ EndofHarvest + Rain +
Rain:EndofHarvest)
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.16122 0.68917 7.489 3.95e-09 ***
EndofHarvest -0.03145 0.01760 -1.787 0.0816 .
Rain 1.78670 1.31740 1.356 0.1826
EndofHarvest:Rain -0.08314 0.03160 -2.631 0.0120 *
---
Residual standard error: 0.7578 on 40 degrees of freedom
Multiple R-Squared:  0.6848, Adjusted R-squared: 0.6612
F-statistic: 28.97 on 3 and 40 DF, p-value: 4.017e-10
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Call:
lm(formula = Quality ~ EndofHarvest + Rain)
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.14633 0.61896 9.930 1.80e-12 ***
EndofHarvest -0.05723 0.01564 -3.660 0.000713 ***
Rain -1.62219 0.25478 -6.367 1.30e-07 ***
---
Residual standard error: 0.8107 on 41 degrees of freedom
Multiple R-Squared: 0.6303, Adjusted R-squared: 0.6123
F-statistic: 34.95 on 2 and 41 DF,  p-value: 1.383e-09

Analysis of Variance Table
Model 1: Quality ~ EndofHarvest + Rain
Model 2: Quality ~ EndofHarvest + Rain + Rain:EndofHarvest

 Res.Df RSS Df Sum of Sq F Pr(>F)
1 41 26.9454
2 40 22.9705 1 3.9749 6.9218 0.01203 *

  Figure 5.8    A scatter plot of Quality versus End of Harvest for Chateau Latour       

20 25 30 35 40 45 50 55

1

2

3

4

5

End of Harvest (in days since August 31)

Q
u
a
lit

y

Rain at Harvest?

No
Yes



   Chapter 6   

  Diagnostics and Transformations for Multiple 
Linear Regression         

 In the previous chapter we studied multiple linear regression. Throughout Chapter 5, 
we assumed that the multiple linear regression model was a valid model for the 
data. Thus, we implicitly made a series of assumptions. In this chapter we consider 
a series of tools known as regression diagnostics to check each of these assump-
tions. Having used these tools to diagnose potential problems with the assumptions, 
we look at how to first identify and then overcome or deal with common problems 
such as nonlinearity and nonconstant variance. 

  6.1 Regression Diagnostics for Multiple Regression  

 We next look at regression diagnostics in order to check the validity of all aspects 
of a regression model. When fitting a multiple regression model we will discover 
that it is important to:

   1.    Determine whether the proposed regression model is a valid model (i.e., determine 
whether it provides an adequate fit to the data). The main tools we will use to 
validate regression assumptions are plots involving  standardized residuals  and/
or  fitted values . We shall see that these plots enable us to assess visually whether 
the assumptions are being violated and,  under certain conditions , point to what 
should be done to overcome these violations. We shall also consider a tool, called 
 marginal model plots , which have wider application than residual plots.  

   2.    Determine which (if any) of the data points have predictor values that have an 
unusually large effect on the estimated regression model. (Recall that such 
points are called  leverage points .)  

   3.    Determine which (if any) of the data points are  outliers , that is, points which do 
not follow the pattern set by the bulk of the data, when one takes into account 
the given model.  

   4.    Assess the effect of each predictor variable on the response variable, having 
adjusted for the effect of other predictor variables using  added variable plots .  

   5.    Assess the extent of  collinearity  among the predictor variables using  variance 

inflation factors .  

S.J. Sheather, A Modern Approach to Regression with R, 151
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152 6 Diagnostics and Transformations for Multiple Linear Regression

   6.    Examine whether the assumption of constant error variance is reasonable. If not, 
decide how can we overcome this problem.  

   7.    If the data are collected over time, examine whether the data are correlated over 
time.     

 We shall begin by looking at the second item of the above list, leverage points, as 
once again, these will be needed in the definition of standardized residuals. 
However, before we begin let’s briefly review some material from Chapter 5. 

  Matrix formulation of least squares regression  
 Define the   (n × 1)   vector,   Y   and the   n × (p +1)   matrix,   X   by 

  11 11

21 22

1

1

1

1

p

p

n n np

x xy

x xy

y x x

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟= =
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

Y X

⋯

⋯

⋮ ⋮ ⋮

⋯

  

Also define the   (p + 1) × 1   vector,   b   of unknown regression parameters and the 
  (n × 1)  vector,   e   of random errors

  0 1

1 2

p n

e

e

e

b

b
b

b

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠

e
⋮ ⋮

   

 As in (5.3), we can write the multiple linear regression model in matrix notation as

   Y = X b + e   (6.1)   

 where   Var(e) = σ2Ι   and Ι     is the (n × n)     identity matrix. Recall from (5.6) to (5.8) 
that the fitted values are given by

   Ŷ = Xb̂   (6.2)   

 where

   b̂ = (X¢X)-1 X¢Y   (6.3)   

 and the residuals are given by

   ê = Y−Ŷ = Y− Xb̂   (6.4)   

  6.1.1 Leverage Points in Multiple Regression 

Recall that data points which exercise considerable influence on the fitted model 
are called  leverage points . Recall also that leverage measures the extent to which 
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the fitted regression model is attracted by the given data point. We are therefore 
interested in the relationship between the fitted values   Ŷ and Y  .

 From (6.2) and (6.3)

  
ˆˆ ( )′= = =′1Y X X X X X Y HY-b    

 where

   ( ) ′= ′ 1H X X X X-

   (6.5)   

 The   (n × n)   matrix  H  is commonly called the  hat matrix  since pre-multiplying  Y  
by  H  changes  Y  into   Ŷ  . According to Hoaglin and Welsh (1978, p. 17) the term hat 
matrix is due to John Tukey, who coined the term in the 1960s. 

 Let  h  
 ij 
  denote the ( i , j )th element of  H , then

  
ˆ
i ii i ij j

j i

Y h Y h Y
≠

= + ∑
   

 where  h  
 ii 
  denotes the  i th diagonal element of  H . Thus, as we saw in Chapter 3,  h  

 ii 
  

measures the extent to which the fitted regression model   Ŷi   is attracted by the given 
data point,  Y  

 i 
 . 

  Special case: Simple linear regression  

 Consider the simple linear regression model in matrix form

  .b= +Y X e    

 where   X   is given by

  1

2

1

1

1
n

x

x

x

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎝ ⎠

X
⋮ ⋮

   

 We found in Chapter 5 that

  
( )

2
1

1

1
1

1

n

i

i

x x
n

SXX
x

−
=

⎛ ⎞
−⎜ ⎟=

⎜ ⎟
⎝ − ⎠

′ ∑
X X

   

 Putting all the pieces together we find that

  
1

1

2
2

1

1 2

( )

1
1

1 1 1 11

1
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n

i

i

n

n

x

x x x
n

x x xSXX
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=
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⎛ ⎞⎜ ⎟ − ⎛ ⎞⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟ …⎝ ⎠⎜ ⎟
⎝ −⎟⎝

′

⎠⎜ ⎠

′

∑

H X X X X

⋯

⋮ ⋮
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 After multiplication and simplification we find that the ( i , j ) th element of  H  is 
given by

  

2

1

( )( ) ( )( )1 1

( )

i j i j

ij n

j

j

x x x x x x x x
h

n SXX n
x x

=

− − − −
= + = +

−∑
   

 as we found in Chapter 3. 

  Rule for identifying leverage points  

 A popular rule, which we shall adopt, is to classify the  i th point as a point of high lever-
age (i.e., a leverage point) in a multiple linear regression model with  p  predictors if

  ( )1
2 average ( ) 2

ii ii

p
h h

n

+
> × = ×     

  6.1.2 Properties of Residuals in Multiple Regression 

 Recall from (6.4) and (6.5) that the vector of residuals is given by

ê = Y−Ŷ = Y − HY =(I − H)Y     

 where      H = X(X′X)−1X′.
 The  expected value  of the vector of  residuals  is

  

( ) ( ) ( )
b

b b

b b

−

=

= −

= −
= −
=

−

′ ′1

ˆE | E

( )

( )

0

X H

H X

X X X X

I

X X

X X

e Y

I

   

 The  variance  of the vector of  residuals  is

  ( ) ( ) ( )( )
( ) ( )

( )( )
( )
( )
( )

s

s

s

s

s

′

′

′

= − −

= − −

= − −

=

′

′ − − +′ ′

= − − +

= −

′

2

2

2

2

2

ˆVar | X Vare I H Y I H

I H I I H

I H I H

II IH HI HH

I H H H

I H

   

 since   HH′ = H2 = X(X′X)-1X′X(X′X)-1X′=X(X′X)-1X′ = H   
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  Standardized residuals  

 The  i th least squares residual has variance given by

  [ ]2ˆVar ( ) 1
i ii

e hs= −    

 where   h
ii
   is the  i th diagonal element of  H . Thus, the  i th  standardized residual ,  r  

 i 
  is 

given by

  
ˆ

1

i

i

ii

e
r

s h
=

−
   

 where   2

1

1
ˆ

( 1)

n

j

j

s e
n p =

=
− + ∑   is the usual estimate of   s   .

 We shall follow the common practice of labelling points as  outliers  in small to 
moderate size data sets if the standardized residual for the point falls outside the 
interval from  -2 to 2 . In very large data sets, we shall change this rule to  -4 to 4 . 
(Otherwise, many points will be flagged as potential outliers.) Recall, however, that 
a point can only be declared to be an outlier, only after we are convinced that the 
model under consideration is a valid one. 

  Using residuals and standardized residuals for model checking  
 In its simplest form, a multiple linear regression model is a  valid model  for the data 
if the conditional mean of  Y  given  X  is a linear function of  X  and the conditional 
variance of  Y  given  X  is constant. In other words,

  
0 1 1 2 2E( | ) ...

p p
Y X x x x xb b b b= = + + + +

   
and

   2Var ( | ) .Y X x s= =
   

 When a  valid model  has been fit, a plot of standardized residuals,  r  
 i 
  against any 

predictor or any linear combination of the predictors (such as the fitted values) will 
have the following features:

  ▪  A random scatter of points around the horizontal axis, since the mean function 
of the  e  

 i 
  is zero when a correct model has been fit  

 ▪  Constant variability as we look along the horizontal axis    

 An implication of these features is that  any pattern in a plot of standardized 

residuals is indicative that an invalid model has been fit to the data . 
 In multiple regression, plots of residuals or standardized residuals provide direct 

information on the way on which the model is misspecified when the following two 
conditions hold:

   0 1 1 2 2E( | ) ( ... )
p p

Y X x g x x xb b b b= = + + + +    (6.6)   

 and

   0 1E( | )
i j j

X X Xa a≈ +    (6.7)   
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 This finding is based on the work of Li and Duan (1989 ). The linearity condition 
(6.7) is just another way to say that the distribution of the predictors follow an 
elliptically symmetric distribution. Note that if the  X ’s follow a multivariate normal 
distribution then this is stronger than condition (6.7). 

 Furthermore, when (6.6) and (6.7) hold, then the  plot of   Y   against fitted values,  
  Ŷ   provides direct information about  g . In particular, in the usual multiple regression 
model  g  is the identity function (i.e.,  g ( x ) =  x ). In this case the plot of  Y  against   Ŷ   
should produce points scattered around a straight line. 

  If either condition (6.6) or (6.7) does not hold, then a pattern in a residual plot 

indicates that an incorrect model has been fit, but the pattern itself does not 

provide direct information on how the model is misspecified.  For example, we shall 
see shortly that in these circumstances it is possible for the standardized residuals 
to display nonconstant variance when the errors in fact have constant variance but 
the conditional mean is modelled incorrectly. Cook and Weisberg (1999a , p. 36) 
give the following advice for this situation: 

 Using residuals to guide model development will often result in misdirection, or at best 
more work than would otherwise be necessary.   

 To understand how (6.7) affects the interpretability of residual plots we shall consider 
the following stylized situation in which the true model is

  0 1 1 2 2 3 3i i i i i
y x x x eb b b b= + + + +    

 and that  x  
 1 
  and  x  

 3 
  and  x  

 2 
  and  x  

 3 
  are nonlinearly related (i.e., that (6.7) does not hold). 

Suppose that we fit a model without the predictor  x  
3
  and obtain the following least 

squares fitted values

  0 1 1 2 2
ˆ ˆ ˆˆ

i i i
y x xb b b= + +    

 Thus, the residuals are given by

  0 0 1 1 1 2 2 2 3 3
ˆ ˆ ˆˆ ˆ ( ) ( ) ( )

i i i i i i i
e y y x x x eb b b b b b b= − = − + − + − + +    

 Then, due to the term   b
3
x

3
   and the fact that  x  

 1 
  and  x  

 3 
  are nonlinearly related, the 

residuals plotted against  x  
 1 
  would show a potentially misleading nonrandom nonlinear 

pattern in  x  
1
 . Similarly, residuals plotted against  x  

2
  would show a potentially mis-

leading nonrandom nonlinear pattern in  x  
2
 . In summary, in this situation the residual 

plots would show nonrandom patterns indicating that an invalid model has been fit 
to the data. However, the nonrandom patterns do not provide direct information on 
how the model is misspecified. 

  Menu pricing in a new Italian restaurant in New York City (cont.)  

 Recall from Chapter 1 that you have been asked to produce a regression model to 
predict the price of dinner. Data from surveys of customers of 168 Italian restau-
rants in the target area are available. The data are in the form of the average of 
customer views on 
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  Y  = Price = the price (in $US) of dinner (including one drink and a tip)   
  x  

1
 = Food = customer rating of the food (out of 30)   

  x  
2
 = Décor = customer rating of the decor (out of 30)   

  x  
3
 = Service = customer rating of the service (out of 30)   

  x  
4
 = East = dummy variable = 1 (0) if the restaurant is east (west) of Fifth Avenue   

 The data are given on the book web site in the file nyc.csv. 
 Recall further that interest centers on developing a regression model that directly 

predicts Price and so we began by considering the following model:

   0 1 1 2 2 3 3 4 4Y x x x x eb b b b b= + + + + +    (6.8)   

 We begin by looking at the validity of condition (6.7) above. Figure  6.1  shows a 
scatter plot matrix of the three continuous predictors. The predictors seem to be 
related linearly at least approximately.  

  Figure 6.1    Scatter plot matrix of the three continuous predictor variables       
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 Assuming that condition (6.6) holds we next look at plots of standardized residu-
als against each predictor (see Figure  6.2 ). The random nature of these plots is 
indicative that model (6.8) is a valid model for the data.

   Finally, Figure  6.3  shows a plot of  Y , price against fitted values,   Ŷ  . We see from 
this figure that  Y  and   Ŷ   appear to be linearly related, i.e., that condition (6.6) appears 

  Figure 6.2    Plots of standardized residuals against each predictor variable       
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  Figure 6.3    A plot of Price against fitted values       
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to hold with  g  equal to the identity function. This provides a further indication that 
(6.8) is a valid model.  

  Generated example for which condition (6.6) does not hold  

 In this example we look at a generated data set for which condition (6.6) does not 
hold. The example is taken from Cook and Weisberg (1999a , p. 36). The data are 
available in the R-library, alr3 in the file called caution. According to Cook and 
Weisberg (1999, p. 36), “… the  p  = 2 predictors were sampled from a Pearson type 
II distribution on the unit disk, which is an elliptical distribution,” which satisfies 
condition (6.7). The mean function was chosen to be

  1 1 1

2
2 22

| | ( )
E( | )

( )2 (1.5 )

x g x
Y X

g xx
= =

+ +
   

 This clearly does not satisfy condition (6.6) since two functions, rather than one, 
are needed to model  Y | X . The errors were chosen to be normally distributed with 
mean 0 and variance 1 and the data set consists of 100 cases. 

 Figure  6.4  shows a scatter plot matrix of the data. The predictor variables  x  
 1 
  and 

 x  
 2 
  are close to being uncorrelated with   corr(x

1
, x

2
) = − 0.043   and there is no evidence 

of a nonlinear relationship between  x  
1
  and  x  

2
 .  

 We begin by considering the following model:

  0 1 1 2 2Y x x eb b b= + + +
   

 even though condition (6.6) does not hold. 
 We next look at plots of standardized residuals against each predictor and the 

fitted values (see Figure  6.5 ). The nonrandom nature of these plots is indicative that 
model is not a valid model for the data. The usual interpretations of the plots of 
standardized residuals against  x  

2
  and fitted values are indicative of nonconstant 

error variance. However, this is not true in this case, as the error variance is con-
stant. Instead the mean function of the model is misspecified. Since condition (6.6) 
does not hold, all we can say in this case is that an invalid model has been fit to the 
data.  Based on residual plots, we cannot say anything about what part of the 

model is misspecified.   
 Finally, Figure  6.6  shows a plot of  Y  against fitted values,   Ŷ  . We see from this 

figure that  Y  does not seem to be a single function of   Ŷ  , i.e., that condition (6.6) 
appears not to hold.  

  Next steps:  

 In this example, since there are just two predictor variables, a three-dimensional 
plot of  Y  against the predictors will reveal the shape of the mean function. In a 
situation with more than two predictor variables, methods exist to directly 
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  Figure 6.5    Plots of standardized residuals against each predictor and the fitted values       
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  Figure 6.4    Scatter plot matrix of the response and the two predictor variables       
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 estimate more than one  g -function and to determine the number of  g -functions 
required. One such method, which was developed by Li (1991) is called Sliced 
Inverse Regression (or SIR). Unfortunately, a discussion of SIR is beyond the 
scope of this book.  

  Generated example for which condition (6.7) does not hold  

 In this example we look at a generated data set for which condition (6.7) does 
not hold. The data consist of  n  = 601 points generated from the following 
model 

  2
1 23Y x x e= + +   

where

  2 1 1E( | ) sin( )x x x=    

  x  
1
  is equally spaced from -3 to 3 and the errors are normally distributed with standard 

deviation equal to 0.1. The data can be found on the book website in the file called 
nonlinear.txt. Figure  6.7  shows scatter plots of the data. There nonlinear relationship 
between  x  

1
  and  x  

2
  is clearly evident in Figure  6.7 . 

  Figure 6.6    A plot of  Y  against fitted values       
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 We begin by considering the following model:

  0 1 1 2 2Y x x eb b b= + + +    

 even though condition (6.7) does not hold. Figure  6.8  shows plots of standardized 
residuals against each predictor and the fitted values. The nonrandom nature of these 
plots is indicative that model is not a valid model for the data. The usual interpreta-
tion of the plot of standardized residuals against  x  

1
  is that a periodic function of  x  

1
  is 

missing from the model. However, this is not true in this case. The highly nonlinear 
relationship between the two predictors has produced the nonrandom pattern in the 
plot of standardized residuals against  x  

1
 . Since (6.7) does not hold, all we can say in 

this case is that model fit to the data is invalid.  Based on residual plots, we cannot 

say anything about what part of the model is misspecified.    

  6.1.3 Added Variable Plots 

 Added-variable plots enable us to visually assess the effect of each predictor, having 
adjusted for the effects of the other predictors. 

 Throughout this section we shall assume that our current regression model is the 
multiple linear regression model,

  Figure 6.7    Scatter plots of the response and the two predictor variables       
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b= +Y X e    (6.9)   

 where   Var(e) = s 2 I   and   I   is the   (n × n)   identity matrix and the   (n × 1)   vector,   Y   the    
n × (p + 1)   matrix,   X   and the   (n ×1)   vector   b   are given by

  11 1 01

21 2 12

1

1

1

1

p

p

pn n np

x xy

x xy

y x x

b

b
b

b

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟= = =
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

Y   X

⋯

⋯

⋮⋮ ⋮ ⋮

⋯

   

 Further, suppose that we are considering the introduction of an additional predictor 
variable  Z  to model (6.9). In other words, we are considering the model 

   b a= + +Y X Z e    (6.10)   

 where 

  1

2

n

z

z

z

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎝ ⎠

Z
⋮

  

  Figure 6.8    Plots of standardized residuals against each predictor and the fitted values       
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In particular, we are interested in   a  , the regression coefficient measuring the effect 
of  Z  on  Y , having adjusted for the effect of  X  on  Y . The  added-variable plot  for 
predictor variable  Z  enables us to visually estimate   a  . The added-variable plot is 
obtained by plotting on the vertical axis the residuals from model (6.9) against on 
the horizontal axis the residuals from model 

   = δ +Z X e    (6.11)   

 Notice that the residuals from model (6.9) give that part of  Y  that is not predicted by 
 X  while the residuals from model (6.11) give that part of  Z  that is not predicted 
by  X . Thus, the added-variable plot for predictor variable  Z  shows that part of  Y  
that is not predicted by  X  against that part of  Z  that is not predicted by  X  (i.e., the 
effects due to  X  are removed from both axes). The added-variable plot was intro-
duced by Mosteller and Tukey (1977). 

  Mathematical justification for added-variable plots  

 In what follows, we follow the approach taken by Chatterjee and Hadi (1988, 
pp. 54–56). The vector of residuals from model (6.9) is given by

  
( ).

ˆˆ = − = − = −
Y X X X

e Y Y Y H Y I H Y
  

where   1( )−′ ′.=
X

H X X X X    Multiplying equation (6.10) by ( )−
X

I H  results in

   

( ) ( ) ( ) ( )
( ) ( )

X X X X

X X

b a

a

− = − + − + −
= − + −

I H Y I H X I H Z I H e

I H Z I H e     (6.12)

 since( ) ( )1( ) 0.−− = − = − =′ ′
X

I H X I X X X X XX X      Notice that ( )X Y.X
ˆ− =I H Y e  

is just the vector of residuals from model (6.9). 
 We next consider the first term on the right-hand side of (6.12), namely, 

( )X a.−I H Z  Notice that the multiple linear regression model (6.11) has residuals 
given by

( )Z.X X X
ˆˆ = − = − = −e Z Z Z H Z I H Z

    where 1
X ( ) .−= ′ ′H X XX X  

 Thus (6.12) can be rewritten as

  ( ) ( ) ( )X X Xa− = − + −I H Y I H Z I H e

Y.X Z.X
ˆ ˆi.e. * (Added-variable plot model)= +e e ea

where ( )X* .= −e I H e  Thus, a is the slope parameter in a regression of  Y.Xê     (i.e., 
the residuals from the regression of  Y  on  X ) on Z.Xê     (i.e., the residuals from  the 
regression of  Z  on  X ). Let 

AVPâ     denote the least squares estimate of the slope  
parameter in a regression of 

Y.Xê      (i.e., the residuals from the regression of  Y  on  X )  
on .

ˆ
Z X

e     (i.e., the residuals from the regression of  Z  on  X ). It can be shown that AVPâ  
is equal to LSâ , the least squares estimate of a in model (6.10). Furthermore, 
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assuming that (6.10) is a valid model for the data, then the added-variable plot 
should produce points randomly scattered around a line through the origin with slope 
  LSâ   . This plot will also enable the user to identify any data points which have 
undue influence on the least squares estimate of a    . 

  Menu pricing in a new Italian restaurant in New York City (cont.)  

 Recall from Chapter 1 that you have been asked to produce a regression model to predict 
the price of dinner. The data are in the form of the average of customer views on 

  Y  = Price = the price (in $US) of dinner (including one drink and a tip)   
  x  

1
 = Food = customer rating of the food (out of 30)   

  x  
2
 = Décor = customer rating of the decor (out of 30)   

  x  
3
 = Service = customer rating of the service (out of 30)   

  x  
4
 = East = 1 (0) if the restaurant is east (west) of Fifth Avenue   

 The data are given on the book web site in the file nyc.csv. 
 Recall further that interest centers on developing a regression model that directly 

predicts Price and so we began by considering the following model:

 0 1 1 2 2 3 3 4 4Y x x x x eb b b b b= + + + + +    (6.13)     

Figure  6.9  contains a plot of  Y , Price against each predictor. Added to each plot is 
the least squares line of best fit for a simple linear regression of Price on that predic-
tor variable.

  Figure 6.9    A scatter plot of  Y , price against each predictor       
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A shortcoming of each plot in Figure  6.9  is that it looks at the effect of a given 
predictor on  Y , Price, ignoring the effects of the other predictors on Price. This 
shortcoming is overcome by looking at added-variable plots (see Figure  6.10 ). The 
lack of statistical significance of the regression coefficient associated with the variable 
Service is clearly evident in the bottom left-hand plot of Figure  6.10 . Thus, having 
adjusted for the effects of the other predictors, the variable Service adds little to the 
prediction of  Y , Price. Two points are identified in the top left-hand plot as having 
a large influence on the least squares estimate of the regression coefficient for Food. 
These points correspond to cases 117 and 168 and should be investigated. Case 117 
corresponds to a restaurant called Veronica which has very low scores for Décor 
and Service, namely 6 and 14, respectively while achieving a relatively high food 
score of 21 given a price of $22. Case 168 corresponds to a restaurant called 
Gennaro, which has low scores for Décor and Service, namely 10 and 16, respec-
tively while achieving a high food score of 24 for a relatively low price of $34. 
Gennaro, still in existence at the end of 2007, is described in the  2008 Zagat Guide 

to New York City Restaurants  as follows: 

 Upper Westsiders gennar-ally  gush over this “unassuming” cash-only Italian “gem”, citing 
“sophisticated” preparations at “bargain” prices; to cope with “awful lines”, “crapshoot” service 
and a room “packed tighter than a box of pasta”, go at off-hours.     

  Figure 6.10    Added-variable plots for the New York City restaurant data       
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  6.2 Transformations  

 In this section we shall see how transformations in multiple regression can be used to:

  ▪  Overcome problems due to nonlinearity  
 ▪  Estimate percentage effects    

  6.2.1 Using Transformations to Overcome Nonlinearity 

 In this section we consider the following two general methods for transforming the 
response variable  Y  and/or the predictor variables  X  

1
 ,  X  

2
 ,  … ,  X  

 p 
  to overcome prob-

lems due to nonlinearity:

  ▪  Inverse response plots  
 ▪  Box-Cox procedure    

 There are three situations we need to consider (a) only the response variable needs 
to be transformed; (b) only the predictor variables needs to be transformed; and (c) 
both the response and predictor variables need to be transformed. We begin by 
looking at the first situation. 

  Transforming only the response variable Y using inverse regression  

 Suppose that the true regression model between Y and  X  
1
 ,  X  

2
 ,  … ,  X  

 p 
  is given by

0 1 1 2 2( )
p p

Y g x x x eb b b b= + + +…+ +  

 where  g  is a function which is generally unknown. The previous model can be 
turned into a multiple linear regression model by transforming  Y  by  g  –1 , the inverse 
of  g , since,

1
0 1 1 2 2( )

p p
g Y x x x eb b b b− = + + +…+ +  

 For example suppose that

0 1 1 2 2exp( )
p p

Y x x x eb b b b= + + +…+ +

then,

  
1( ) exp( ) and so ( ) log( ).g Y Y g Y Y

−= =    

 We next look at methods for estimating  g  –1 . 

  Example: Modelling defective rates  

 This example is adapted from Siegel (1997, pp. 509–510). According to Siegel: 

 Everybody seems to disagree about just why so many parts have to be fixed or thrown away 
after they are produced. Some say that it’s the standard deviation of the temperature of the 
production process, which needs to be minimised. Others claim it is clearly the density of 
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the product, and that the problems would disappear if the density is increased. Then there 
is Ole, who has been warning everyone forever to take care not to push the equipment 
beyond its limits. This problem would be easiest to fix, simply by slowing down the production 
rate; however, this would increase some costs. The table below gives the average number 
of defects per 1,000 parts produced (denoted by Defective) along with values of the other 
variables described above for 30 independent production runs.   

 The data are given in Table 6.1 and can be found on the book web site in the file 
defects.txt. 

 Interest centres on developing a model for  Y , Defective, based on the predictors 
 x  

1
 , Temperature;  x  

2
 , Density and  x  

3
 , Rate. 

 Figure  6.11  contains a scatter plot matrix of the response variable, Defective and 
the predictors Temperature, Density and Rate. The three predictors appear to be 
linearly related. However, the separate relationships between the response variable 
and each of the predictor variables do not appear to be linear.  

 We begin by fitting the regression model 

 
0 1 1 2 2 3 3Y x x x eb b b b= + + + +    (6.14)     

 Figure  6.12  contains scatter plots of the standardized residuals against each predic-
tor and the fitted values for model (6.14). Each of the plots in Figure  6.12  shows a 
curved rather than a random pattern. Thus, model (6.14) does not appear to be a 
valid model for the data.  

 Figure  6.13  contains a plot of  Y , Defective against the fitted values,    Ŷ . The 
straight-line fit to this plot (displayed as a dashed line) provides a poor fit. This 
provides further evidence that model (6.14) is not a valid model for the data. 
The solid line in Figure  6.11  is a quadratic fit and it follows the points more closely 
than the straight line.  

 In summary, model (6.14) does not provide a valid model to the data since:

  Table 6.1    Data on defective rates (defects.txt)    

 Temperature  Density  Rate  Defective  Temperature  Density  Rate  Defective 

 0.97  32.08  177.7  0.2  2.76  21.58  244.7  42.2 

 2.85  21.14  254.1  47.9  2.36  26.3  222.1  13.4 

 2.95  20.65  272.6  50.9  1.09  32.19  181.4  0.1 

 2.84  22.53  273.4  49.7  2.15  25.73  241  20.6 

 1.84  27.43  210.8  11  2.12  25.18  226  15.9 

 2.05  25.42  236.1  15.6  2.27  23.74  256  44.4 

 1.5  27.89  219.1  5.5  2.73  24.85  251.9  37.6 

 2.48  23.34  238.9  37.4  1.46  30.01  192.8  2.2 

 2.23  23.97  251.9  27.8  1.55  29.42  223.9  1.5 

 3.02  19.45  281.9  58.7  2.92  22.5  260  55.4 

 2.69  23.17  254.5  34.5  2.44  23.47  236  36.7 

 2.63  22.7  265.7  45  1.87  26.51  237.3  24.5 

 1.58  27.49  213.3  6.6  1.45  30.7  221  2.8 

 2.48  24.07  252.2  31.5  2.82  22.3  253.2  60.8 

 2.25  24.38  238.1  23.4  1.74  28.47  207.9  10.5 
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  ▪  The plots of standardized residuals against each predictor and the fitted values 
do not produce random scatters  

 ▪  The summary plot of  Y  against Ŷ  shows a quadratic rather than a linear 
trend, that is, ˆ( )Y g Y≅  where  g  is a quadratic function    

 In view of the last point, it is natural to consider a transformation of  Y . 

  Inverse response plots  

 Suppose that the true regression model between Y and  X  
1
 ,  X  

2
 ,  … ,  X  

 p 
  is given by

0 1 1 2 2( )
p p

Y g x x x eb b b b= + + +…+ +  

 where  g  is an unknown function. Recall that the previous model can be turned into 
a multiple linear regression model by transforming  Y  by  g  –1 , the inverse of  g , since,

  1
0 1 1 2 2( ) .

p p
g Y x x x eb b b b− = + + +…+ +    

  Figure 6.11    A scatter plot matrix of the data in the file defects.txt       
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  Figure 6.12    Plots of the standardized residuals from model (6.14)       
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  Figure 6.13    Plot of  Y  against fitted values with a straight line and a quadratic curve       
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 Thus, if we knew 0 1, ,
p

b b b… we could discover the shape of  g  –1  by plotting  Y  on 

the horizontal axis and 0 1 1 p p
x xb b b+ +…  on the vertical axis. 

 Based on the results of Li and Duan (1989), Cook and Weisberg (1994) showed 
that if conditions (6.6) and (6.7) hold then  g  –1  can be estimated from the scatter plot 

of  Y  (on the horizontal axis) and 0 1 1
ˆ ˆ ˆˆ

p p
y x xb b b= + +…+     (on the vertical axis). 

Such a plot is commonly referred to as  inverse response plot  (since the usual axis 
for  Y  is the vertical axis). It can be shown that the assumption that the predictors  X  

1
 , 

 X  
2
 ,  … ,  X  

 p 
  have a multivariate normal distribution is much stronger than the assump-

tion than the predictors  X  
1
 ,  X  

2
 , …,  X  

 p 
  are linearly related at least approximately. 

  Example: Modelling defective rates (cont.)  

 Figure  6.14  contains an inverse response plot for the data in the example involving 
defective rates. Since we found that the predictors are linearly at least approxi-
mately (see Figure  6.11 ), we should be able to estimate  g  –1  from the inverse 
response plot. Marked on the plot are three so-called power curves

ˆ for 0,0 4 .4 ,1y y
l l= =   

 where, as we shall see below, 0l =  corresponds to natural logarithms. It is evident 
that among the three curves, the power curve 

( ) 0.44
0 1 1 2 2 3 3

ˆ ˆ ˆ ˆŷ x x x yb b b b= + + + =

provides the closest fit to the data in Figure  6.14 . This is not unexpected since we 
found in Figure  6.13  that a quadratic provided an approximation to  g . Rounding 

  Figure 6.14    Inverse response plot for the data set defects.txt       
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0.44 to the nearest reasonable value, namely, 0.5 we shall transform  Y  by taking the 
square root and thus consider the following model

 1 0.5
0 1 1 2 2 3 3( )g Y Y x x x eb b b b− = = + + + +    (6.15)     

  Transforming only the response variable Y using Box-Cox method  

 Box and Cox (1964) provide a general method for transforming a strictly positive 
response variable  Y . The Box-Cox procedure aims to find a transformation that makes 
the transformed response variable close to normally distributed having taken into 
account the regression model under consideration. Box and Cox (1964) considered 
the modified family of power transformations

{ 1

1

      

gm( ) ( 1)/   if 0
( , ) ( , ) gm( ) gm( )log( )  if =0M S

Y Y
Y Y Y

Y Y

l l
l l l

l l l

−
− − ≠ψ = ψ × =  

 where   
1

1 1

1
gm( ) exp log( )

nn

n
i i

i i

Y Y Y
n= =

⎛ ⎞
= = ⎜ ⎟⎝ ⎠∏ ∑    is the geometric mean of  Y . The Box-Cox 

method is based on the notion that for some value of l the transformed version of  Y , 
namely, ( , )

M
Y lΨ  is normally distributed. The method is based on choosing l that 

maximizes the log-likelihood function for 2
0 1, , , , , | ( , ).

p M
Yb b b s l Y l…  

  Example: Modelling defective rates (cont.)  

 Figure  6.15  provides plots of the log-likelihood against l for the data in the example 
involving defective rates. The value of l that maximizes the log-likelihood and 95% 
confidence limits for l are marked on the plot. The value of l that maximizes the 
log-likelihood is 0.45. Thus, in this case, both the inverse response plot and the 
Box-Cox transformation method point to using a square root transformation of  Y . 
Thus, we next consider the multiple linear regression model given by (6.15).  

 Figure  6.16  contains plots of  Y   0.5  against each predictor. It is evident from 
Figure  6.16  that the relationship between  Y   0.5  and each predictor is more linear than 
the relationship between  Y  and each predictor.  

 Figure  6.17  contains scatter plots of the standardized residuals against each predic-
tor and the fitted values for model (6.15). Each of the plots in Figure  6.15  shows a 
random pattern. Thus, model (6.15) appears to be a valid model for the data.  

 Figure  6.18   contains a plot of 0.5 DefectiveY =  against the fitted values. The 
straight-line fit to this plot provides a reasonable fit. This provides further evidence 
that model (6.15) is a valid model for the data.  

 The diagnostic plots provided by R for model (6.15) shown in Figure  6.19  fur-
ther confirm that it is a valid model for the data.  

 We finish by considering the following theories put forward regarding the causes 
of the defects (taken from Siegel, 1997, p. 509): 

 Others claim it is clearly the density of the product, and that the problems would disappear 
if the density is increased. Then there is Ole, who has been warning everyone forever to 
take care not to push the equipment beyond its limits. This problem would be easiest to fix, 
simply by slowing down the production rate ….   
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  Figure 6.15    Log-likelihood for the Box-Cox transformation method       
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  Figure 6.16    Plots of  Y   0.5  against each predictor       
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  Figure 6.17    Plots of the standardized residuals from model (6.15)       
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  Figure 6.18    A plot of  Y   0.5  against fitted values with a straight line added       
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Regression Output from R from model (6.15)

 Call:   
 lm(formula = sqrt(Defective) ~ Temperature + Density + Rate)   

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 5.59297 5.26401 1.062 0.2978   
 Temperature 1.56516 0.66226 2.363 0.0259 *   
 Density -0.29166 0.11954 -2.440 0.0218 *   
 Rate 0.01290 0.01043 1.237 0.2273   
 ---   
 Residual standard error: 0.5677 on 26 degrees of freedom   
 Multiple R-Squared: 0.943,      Adjusted R-squared: 0.9365   
 F-statistic: 143.5 on 3 and 26 DF,  p-value: 2.713e-16   

 The variable Rate is not statistically significant, thus not supporting Ole’s theory 
above. On the other hand, the coefficient of Density is statistically significantly less 
than zero in line with the theory above of increasing the density as a way of lower-
ing the defect rate. However, the value of the variable Rate still needs to be consid-
ered when adjustments are made to one or both of the statistically significant 

  Figure 6.19    Diagnostic plots provided by R for model (6.15)       
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predictors, since from Figure  6.11  Rate is clearly related to the other two predictors. 
Finally, we show in Figure  6.20  the added-variable plots associated with model 
(6.15). The lack of statistical significance of the predictor Rate is evident in the 
bottom left-hand plot of Figure  6.18 .  

  Transforming both the response and the predictor variables  

 When some, or all, of the predictors and the response are highly skewed and trans-
formations of these variables are desirable, the following two alternative approaches 
are suggested by Cook and Weisberg (1999b , p. 329): 

  Approach 1:  

    1.    Transform  X  
1
 ,  X  

2
 , …,  X  

 p 
  so that the distribution of the transformed versions 

1 21 2( , ), ( , ), ( , )
pS X S X S p X

x x xl l lΨ Ψ …Ψ  are as jointly normal as possible. The mul-
tivariate version of the Box-Cox transformation procedure is one way to do this.  

   2.    Having transformed  X  
1
 ,  X  

2
 , …,  X  

 p 
  to 

1 21 2( , ), ( , ), ( , )
pS X S X S p X

x x xl l lΨ Ψ …Ψ   , 
      consider a multivariate linear regression model of the form 

10 1 1( ( , ) ( , ) ).
pS X p S p X

Y g x x eb b l b l= + Ψ +…+ Ψ +   

       Then use an inverse response plot to decide on the transformation,  g  –1  for  Y .     

  Figure 6.20    Added-variable plots for model (6.15)       
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  Approach 2:  

 Transform  X  
1
 ,  X  

2
 , …,  X  

 p 
  and  Y  simultaneously to joint normality using the multi-

variate generalization of the Box-Cox method. 

  Example: Magazine revenue  

 An analyst is interested in understanding the relationship between revenue from 
magazine sales and that from advertising. The analyst has obtained some US data 
from  Advertising Age’s  14th annual Magazine 300 report (  http://www.adage.com    ) 
which was released in September 2003. Data are available for 204 US magazines 
for the following variables: 

  Y  = AdRevenue = Revenue from advertising (in thousands of $) 
  X  

1
 = AdPages = Number of pages of paid advertising   

  X  
2
 = SubRevenue = Revenue from paid subscriptions (in thousands of $)   

  X  
3
 = NewsRevenue = Revenue from newsstand sales (in thousands of $)   

 The data are on the book web site in the file magazines.csv. Interest centers on 
building a regression model to predict Ad Revenue from Ad Pages, Sub Revenue 
and News Revenue. 

 Figure  6.21  shows a scatter plot matrix of the response variable and the three 
predictor variables. The response variable and the three predictor variables are each 
highly skewed. In addition, the predictors do not appear to be linearly related. Thus, 
we need to consider transformations of the response and the three predictor 
variables.  

  Approach 1: Transforming the predictors first and then the response  

 Given below is the R output using the bctrans command from alr3. 

Output from R

 box.cox Transformations to Multinormality       

  Est.Power Std.Err. Wald(Power=0) Wald(Power=1)   
 AdPages 0.1119 0.1014 1.1030 -8.7560   
 SubRevenue -0.0084 0.0453 -0.1864 -22.2493   
 NewsRevenue 0.0759 0.0333 2.2769 -27.7249   
  LRT df p.value   
 LR test, all lambda equal 0 6.615636 3 0.08521198   
 LR test, all lambda equal 1 1100.018626 3 0.00000000   

 Using the Box-Cox method to transform the predictor variables toward normality, 
results values of l close to 0. Thus, we shall log transform all three predictors and 
consider a model of the form

0 1 2 3

AdRevenue

( log(AdPages)+ log(SubRevenue) + log(NewsRevenue) )g eb b b b

=
+ +
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 and seek to find  g  –1  using an inverse response plot, since,

1
0 1 2

3

(AdRevenue) log(AdPages)+ log(SubRevenue)

+ log(NewsRevenue)

g

e

b b b

b

− = +
+

 

 Figure  6.22  contains an inverse response plot. (Since the predictor variables have 
been transformed towards normality, we should be able to estimate  g  –1  from the 
inverse response plot.) Marked on the plot are three so-called power curves

ˆ AdRevenue for 0,0.23,1Y

Y
y

l l= =   

 where 0l =  corresponds to natural logarithms. It is evident that among the three 
curves, the power curve 

0.23ˆ AdRevenuey =   

 provides the closest fit to the data in Figure  6.22 . However, the curve based on 0l =  
also seems to provide an adequate fit, especially for small to moderate values of 

  Figure 6.21    A scatter plot matrix of the data in file magazines.csv       
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AdRevenue. In addition, notice that two of the predictors and the response are all 
measured in the same units (i.e., $). Thus, a second argument in favor of the log 
transformation for the response variable is that it means that all the variables meas-
ured in dollars are transformed in the same way. 

  Approach 2: Transforming all variables simultaneously  

 Given below is the output from R using bctrans from alr3. 

Output from R

 box.cox Transformations to Multinormality   
  Est.Power Std.Err. Wald(Power=0) Wald(Power=1)   
 AdRevenue 0.1071 0.0394 2.7182 -22.6719   
 AdPages 0.0883 0.0836 1.0566 -10.9068   
 SubRevenue -0.0153 0.0362 -0.4217 -28.0413   
 NewsRevenue 0.0763 0.0330 2.3087 -27.9682   
  LRT df p.value   
 LR test, all lambda equal 0 13.87021 4 0.007721018   
 LR test, all lambda equal 1 1540.50928 4 0.000000000   

 Using the Box-Cox method to transform the predictor and response variables 
simultaneously toward multivariate normality, results in values of each l close to 0. 
Thus, the two approaches agree in that they suggest that each variable be trans-
formed using the log transformation. 

  Figure 6.22    Inverse response plot       
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 Figure  6.23  shows a scatter plot matrix of the log-transformed response and 
predictor variables. The pair-wise relationships in Figure  6.23  are much more linear 
than those in Figure  6.21 . The least linear relationship appears to be between 
log(AdRevenue) and log(NewsRevenue).  

 We next consider a multiple linear regression model based on the log-trans-
formed data, namely, 

  
0 1 2

3

log(AdRevenue) log(AdPages)+ log(SubRevenue)

+ log(NewsRevenue) e

b b b

b

= +
+

   
(6.16)

 Figure  6.24  contains scatter plots of the standardized residuals against each predic-
tor and the fitted values for model (6.16). Each of the plots in Figure  6.24  shows a 
random pattern. Thus, model (6.16) appears to be a valid model for the data.  

 The plot of log(AdRevenue) against the fitted values in Figure  6.25  provides 
further evidence that model (6.16) is a valid model.  

  Figure 6.23    Scatter plot matrix of the log-transformed data       
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  Figure 6.24    Plots of the standardized residuals from model (6.16)       
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  Figure 6.25    A plot of log(adrevenue) against fitted values with a straight line added       
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 Figure  6.26  shows the diagnostic plots provided by R for model (6.16). These 
plots further confirm that model (6.16) is a valid model for the data. The dashed 
vertical line in the bottom right-hand plot of Figure  6.26  is the usual cut-off for declar-
ing a point of high leverage (i.e.,   2( 1) / 8 / 204 0.039p n+ = = ). Thus, there is a bad 
leverage point (i.e., case 199) that requires further investigation.  

 Given below is the output from R associated with fitting model (6.16).   The 
variable log(NewsRevenue) is not statistically significant, while the other two 
predictors are. Because both the predictor and response variables have been log-
transformed the usual interpretation of regression coefficients as percentages 
holds. Thus, for example, holding all else constant, the model (6.16) predicts:

  ▪  A 1.03% increase in AdRevenue for every 1% increase in AdPages  
 ▪  A 0.56% increase in AdRevenue for every 1% increase in SubRevenue    

 Finally, we show in Figure  6.27  the added-variable plots associated with model 
(6.16). The lack of statistical significance of the predictor Log(NewsRevenue) is 
evident in the bottom left-hand plot of Figure  6.27 .  

  Figure 6.26    Diagnostic plots provided by R for model (6.16)       
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  Regression output from R    

 Call:   

 lm(formula = log(AdRevenue) ~ log(AdPages) + log(SubRevenue) + 
log(NewsRevenue))   

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) -2.02894 0.41407 -4.900 1.98e-06 ***   
 log(AdPages) 1.02918 0.05564 18.497 < 2e-16 ***   
 log(SubRevenue) 0.55849 0.03159 17.677 < 2e-16 ***   
 log(NewsRevenue) 0.04109 0.02414 1.702 0.0903 .   
 ---   
 Residual standard error: 0.4483 on 200 degrees of freedom   
 Multiple R-Squared: 0.8326, Adjusted R-squared: 0.8301   
 F-statistic: 331.6 on 3 and 200 DF, p-value: < 2.2e-16    

  Figure 6.27    Added-variable plots for model (6.16)       
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  6.2.2  Using Logarithms to Estimate Percentage Effects: 

Real Valued Predictor Variables 

 In this section we illustrate how logarithms can be used to estimate percentage 
change in  Y  based on a one unit change in a given predictor variable. In particular, 
we consider the regression model 

 0 1 1 2 2log( ) log( )Y x x eb b b= + + +    (6.17)   

 where log refers to log to the base  e  or natural logarithms and  x  
2
  is a predictor vari-

able taking numerical values (and hence  x  
2
  is allowed to be a dummy variable). In 

this situation the slope
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 So that, for small 2b

2 2100Y x% bΔ × Δ≃  

 Thus for every 1 unit change in  x  
 2 
  (i.e., 2 1xΔ =     ) the model predicts a 2100 b× % 

change in  Y . 

  Example: Newspaper circulation  

 Recall from Chapter 1 that the company that publishes a weekday newspaper in a 
mid size American city has asked for your assistance in an investigation into the 
feasibility of introducing a Sunday edition of the paper. The current circulation of 
the company’s weekday newspaper is 210,000. Interest focuses on developing a 
regression model that enables you to predict the Sunday circulation of a newspaper 
with a weekday circulation of 210,000. Circulation data from September 30, 2003 
are available for 89 US newspapers that publish both weekday and Sunday editions. 
The data are available on the book website, in the file circulation.txt. 
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  Figure 6.28    A plot of log(Sunday Circulation) against log(Weekday Circulation)       
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The situation is further complicated by the fact that in some cities there is more 
than one newspaper In particular, in some cities there is a tabloid newspaper along 
with a so called "serious" newspaper as a competitor. As such the data contains a 
dummy variable, which takes value 1 when the newspaper is a tabloid with a seri-
ous competitor in the same city and value 0 othervise.

 Figure  6.28  is a repeat of Figure 1.3, which is a plot of log(Sunday Circulation) 
versus log(Weekday Circulation) with the dummy variable Tabloid identified. On 
the basis of Figure  6.28  we consider model (6.17) with 

  Y  = log(Sunday Circulation)   
  X  

1
  = log(Weekday Circulation)    

  X  
2
  = Tabloid.with.a.Serious.Competitor (a dummy variable) 

 Thus we consider the following multiple linear regression model: 

     
b b

b  

= +

+
0 1

3

log(SundayCirculation) log(WeekdayCirculation)

Tabloid.with.a.Serious.Competitor + e
    (6.18)

 Figure  6.29  contains scatter plots of the standardized residuals against each 
predictor and the fitted values for model (6.18). Each of the plots in Figure  6.29  
shows a random pattern. Thus, model (6.18) appears to be a valid model for the data.  

 Figure  6.30  contains a plot of log(Sunday Circulation) against the fitted values. 
The straight-line fit to this plot provides a reasonable fit. This provides further 
evidence that model (6.18) is a valid model for the data.  
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  Figure 6.30    A plot of log(Sunday Circulation) against fitted values       
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  Figure 6.29    Plots of the standardized residuals from model (6.17)       
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 Figure  6.31  shows the diagnostic plots provided by R for model (6.18). These 
plots further confirm that model (6.18) is a valid model for the data.  

 The dashed vertical line in the bottom right-hand plot of Figure  6.31  is the usual 
cut-off for declaring a point of high leverage (i.e., 2 ( 1) / 6 / 89 0.067p n× + = =   ). 
The points with the largest leverage correspond to the cases where the dummy 
variable is 1. 

The output from R associated with fitting model (6.18) shows that both predictor 
variables are highly statistically significant. Because of the log transformation 
model (6.18) predicts:

 ■  A 1.06% increase in Sunday Circulation for every 1% increase in Weekday 
Circulation  

■ A 53.1% decrease in Sunday Circulation if the newspaper is a tabloid with a 
serious competitor 

  Figure 6.31    Diagnostic plots provided by R for model (6.18)       
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Regression output from R

 Call:   

 lm(formula = log(Sunday) ~ log(Weekday) + Tabloid.with.a.Serious.
Competitor)   

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) -0.44730 0.35138 -1.273 0.206   
 log(Weekday) 1.06133 0.02848 37.270 < 2e-16 ***   
 Tabloid.with.
a.Serious.
Competitor -0.53137 0.06800 -7.814 1.26e-11 ***   
 ---   
 Residual standard error: 0.1392 on 86 degrees of freedom   
 Multiple R-Squared: 0.9427, Adjusted R-squared: 0.9413   
 F-statistic: 706.8 on 2 and 86 DF, p-value: < 2.2e-16 ---  
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Figure  6.32  contains the added-variable plots associated with model (6.18). The 
fact that both predictor variables are highly statistically significant is evident from 
the added variable plots.    

 Finally, we are now able to predict the Sunday circulation of a newspaper with 
a weekday circulation of 210,000. There are the following two cases to consider 
corresponding to whether the newspaper is a tabloid with a serious competitor or 
not. Given below are the prediction intervals obtained from R for log(Sunday 
Circulation): 

Output from R

 Tabloid.with.a.Serious.Competitor=1   
  fit lwr upr   
 [1,] 12.02778 11.72066 12.33489  

 Tabloid.with.a.Serious.Competitor=0  
  fit lwr upr   
 [1,] 12.55915 12.28077 12.83753   

 Back transforming these results by exponentiating them produces the numbers in 
Table  6.2 .      

 Can you think of a way of improving model (6.18)?   

 Table 6.2    Predictions of Sunday circulation  

 Tabloid with a serious competitor  Weekday circulation  Prediction  95% Prediction interval 

 Yes  210000  167340  (123089, 227496) 

 No  210000  284668  (215512, 376070) 
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  6.3  Graphical Assessment of the Mean 

Function Using Marginal Model Plots  

 We begin by briefly considering simple linear regression. In this case, we wish to 
visually assess whether 

    0 1Y x eb b= + +    (6.19)

 models  E ( Y | x ) adequately. One way to assess this is to compare the fit from (6.19) 
with a fit from a general or nonparametric regression model (6.20) where 

     ( )Y f x e= +     (6.20)

 There are many ways to estimate  f  nonparametrically. We shall use a popular esti-
mator called loess, which is based on local linear or locally quadratic regression 
fits. Further details on nonparametric regression in general and loess in particular 
can be found in Appendix A.2. 

 Under model (6.19), 
1M 0 1E ( | ) ,Y x xb b= +  while under model (6.20), 

1FE ( | ) ( ).Y x f x=  Thus, we shall decide that model (6.19) is an adequate model if 

0 1
ˆ ˆ xb b+  and ˆ( )f x  agree well. 

  Figure 6.32    Added-variable plots for model (6.18)       
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  Figure 6.33    A plot of the professional salary data with straight line and loess fits       
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  Example: Modeling salary from years of experience (cont.)  

 Recall from Chapter 5 that we wanted to develop a regression equation to model 
the relationship between  Y , salary (in thousands of $) and  x , the number of years of 
experience. The 143 data points can be found on the book web site in the file prof-
salary.txt. 

 For illustrative purposes we will start by considering the model 

    0 1Y x eb b= + +    (6.21)

 and compare this with nonparametric regression model (6.22) where 

   ( )Y f x e= +     (6.22)

 Figure  6.33  includes the least squares fit for model (6.21) and as a solid curve, the 

loess fit (with 2 3a =     ) for model (6.22). The two fits differ markedly indicating that 

model (6.21) is not an adequate model for the data.    
 We next consider a quadratic regression model for the data 

     2
0 1 2Y x x eb b b= + + +     (6.23)

 Figure  6.34  includes the least squares fit for model (6.23) and as a solid curve loess 

fit (with 2 3a = ) for model (6.22). The two fits are virtually indistinguishable. This 

implies that model (6.23) models  E ( Y | x ) adequately.  
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    The challenge for the approach we have just taken is how to extend it to regres-
sion models based on more than one predictor. In what follows we shall describe 
the approach proposed and developed by Cook and Weisberg (1997). 

  Marginal Model Plots  

 Consider the situation when there are just two predictors  x  
1
  and  x  

2
 . We wish to visu-

ally assess whether 

   0 1 1 2 2Y x x eb b b= + + +    (M1)   

 models  E ( Y | x ) adequately. Again we wish to compare the fit from (M1) with a fit 
from a nonparametric regression model (F1) where 

   1 2( , )Y f x x e= +    (F1)   

 Under model (F1), we can estimate   
1F 1E ( | )Y x    by adding a nonparametric fit to the 

plot of  Y  against  x  
1
 . We want to check that the estimate of   

1F 1E ( | )Y x        is close to the 
estimate of   

1M 1E ( | )Y x   . 

 Under model (M1)

    
1M 1 0 1 1 2 2 1 0 1 1 2 2 1E ( | ) E( | ) E( | )Y x x x e x x x xb b b b b b= + + + = + +  

  Figure 6.34    A plot of the professional salary data with quadratic and loess fits       
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 Notice that this last equation includes the unknown   
1M 2 1E ( | )x x    and that in general 

there would be ( p  – 1) unknowns, where  p  is the number of predictor variables in model 
(M1). Cook and Weisberg (1997) overcome this problem by utilizing the following 
result: 

   
1 1M 1 M 1E ( | ) E E ( | ) |Y x Y x x⎡ ⎤= ⎣ ⎦    (6.24)   

 The result follows from the well-known general result re conditional expectations. 
However, it is easy and informative to demonstrate the result in this special case. 
First, note that 

  1 1M M 0 1 1 2 2 0 1 1 2 2E ( | ) E ( | )Y x x x e x x xb b b b b b= + + + = + +
  

so that

  1M 1 0 1 1 2 2 1 0 1 1 2 2 1E E ( | ) | E( | ) E( | )Y x x x x x x x xb b b b b b⎡ ⎤ = + + = + +⎣ ⎦    

 matching what we found on the previous page for   
1ME ( | )Y x   . 

 Under model (M1), we can estimate   
1M 0 1 1 2 2E ( | )Y x x xb b b= + +    by the fitted 

values   0 1 1 2 2
ˆ ˆ ˆˆ .Y x xb b b= + +    Utilizing (6.24) we can therefore estimate 

  
1 1M 1 M 1E ( | ) E E ( | ) |Y x Y x x⎡ ⎤= ⎣ ⎦    by estimating  

1M 1E E ( | ) |Y x x⎡ ⎤⎣ ⎦ with an estimate 

of  1
ˆE | .Y x⎡ ⎤⎣ ⎦     

 In summary, we wish to compare estimates under models (F1) and (M1) by 
comparing nonparametric estimates of   1E( | )Y x    and   1

ˆE | .Y x⎡ ⎤⎣ ⎦    If the two 
nonparametric estimates agree then we conclude that  x  

 1 
  is modelled correctly 

by model (M1). If  not  then we conclude that  x  
 1 
  is  not  modelled correctly by 

model (M1). 

  Example: Modelling defective rates (cont.)  

 Recall from earlier in Chapter 6 that interest centres on developing a model for  Y , 
Defective, based on the predictors  x  

1
 , Temperature;  x  

2
 , Density and  x  

3
 , Rate. The 

data can be found on the book web site in the file defects.txt. 
 The first model we considered was the following: 

   0 1 1 2 2 3 3Y x x x eb b b b= + + + +    (6.25)   

 The left-hand plot in Figure  6.35  is a plot of  Y  against  x  
1
 , Temperature with the 

loess estimate of   1E( | )Y x    included. The right-hand plot in Figure  6.35  is a plot of 
  Ŷ    against  x  

1
 , Temperature with the loess estimate of   1

ˆE | .Y x⎡ ⎤⎣ ⎦    included. 

 The two curves in Figure  6.35  do not agree with the fit in the left-hand plot 
showing distinct curvature, while the fit in the right-hand plot is close to a straight 
line. Thus, we decide that  x  

1
  is  not  modelled correctly by model (6.25). 

 In general, it is difficult to compare curves in different plots. Thus, following 
Cook and Weisberg (1997) we shall from this point on include both nonparametric 
curves on the plot of  Y  against  x  

1
 . The plot of  Y  against  x  

1
  with the loess fit for  Y  

against  x  
1
  and the loess fit for   Ŷ    against  x  

1
  both marked on it is called a  marginal 

model plot  for  Y  and  x  
1
 . 
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  Figure 6.35    Plots of  Y  and   Ŷ   against  x  
1
 , Temperature       
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  Figure 6.36    A marginal mean plot for Defective and Temperature       
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 Figure  6.36  contains a  marginal model plot  for  Y  and  x  
1
 . The solid curve is the 

loess estimate of 1E( | )Y x  while the dashed curve is the loess estimate of 
 1

ˆE | .Y x⎡ ⎤⎣ ⎦     It is once again clear that these two curves do not agree well.  
  It is recommended in practice that marginal model plots be drawn for each pre-

dictor (except dummy variables) and for  Ŷ . Figure  6.37  contains these recommended 
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  Figure 6.37    Marginal model plots for model (6.25)       

1.0 1.5 2.0 2.5 3.0 20 22 24 26 28 30 32

0

10

20

30

40

50

60

Temperature

D
e
fe

c
ti
v
e

0

10

20

30

40

50

60

D
e
fe

c
ti
v
e

0

10

20

30

40

50

60

D
e
fe

c
ti
v
e

0

10

20

30

40

50

60

D
e
fe

c
ti
v
e

Density

180 200 220 240 260 280

Rate

−10 0 10 20 30 40 50

Fitted values

marginal model plots for model (6.25) in the current example. The two fits in 
each of the plots in Figure  6.37  differ markedly. In particular, each of the non-
parametric estimates in Figure  6.37  (marked as solid curves) show distinct curvature 
which is not present in the smooths of the fitted values (marked as dashed curves). 
Thus, we again conclude that (6.25) is not a valid model for the data.  

 We found earlier that in this case, both the inverse response plot and the Box-
Cox transformation method point to using a square root transformation of  Y . Thus, 
we next consider the following multiple linear regression model

   
0.5

0 1 1 2 2 3 3Y x x x eb b b b= + + + +    (6.26)   

 Figure  6.38  contains the recommended marginal model plots for model (6.26) in 
the current example. These plots again point to the conclusion that (6.26) is a valid 
model for the data.   
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  Figure 6.38    Marginal model plots for model (6.26)       
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  6.4 Multicollinearity  

 A number of important issues arise when strong correlations exist among the pre-
dictor variables (often referred to as multicollinearity). In particular, in this situa-
tion regression coefficients can have the wrong sign and/or many of the predictor 
variables are not statistically significant when the overall F-test is highly signifi-
cant. We shall use the following example to illustrate these issues. 

  Example: Bridge construction  

 The following example is adapted from Tryfos (1998, pp. 130–1). According to Tryfos: 

 Before construction begins, a bridge project goes through a number of stages of 
production, one of which is the design stage. This phase is composed of various activities, 
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 Table 6.3    Partial listing of the data on bridge construction (bridge.txt)  

 Case  TIME  DAREA  CCOST  DWGS  LENGTH  SPANS 

  1   78.8   3.6   82.4   6   90  1 
  2  309.5  5.33  422.3  12  126  2 
  3  184.5  6.29  179.8   9   78  1 
  . . .     .   .    .  .
 45   87.2  3.24   70.2   6   90  1 

each of which contributes directly to the overall design time. ….In short, predicting the 
design time is helpful for budgeting and internal as well as external scheduling 
purposes.   

 Information from 45 bridge projects was compiled for use in this study. The data 
are partially listed in Table  6.3  below and can be found on the book web site in the 
file bridge.txt. The response and predictor variables are as follows:     

  Y  = Time = design time in person-days   
  x  

1
  = DArea = Deck area of bridge (000 sq ft)   

  x  
2
  = CCost = Construction cost ($000)   

  x  
3
  = Dwgs = Number of structural drawings   

  x  
4
  = Length = Length of bridge (ft)   

  x  
5
  = Spans = Number of spans   

 We begin by plotting the data. Figure  6.39  contains a scatter plot matrix of response 
variable and the five predictor variables. The response variable and a number of the 
predictor variables are highly skewed. There is also evidence of nonconstant variance 
in the top row of plots. Thus, we need to consider transformations of the response 
and the five predictor variables.  

 The multivariate version of the Box-Cox transformation method can be used to 
transform all variables simultaneously. Given below is the output from R using the 
bctrans command from alr3. 

Output from R

 box.cox Transformations to Multinormality   
       Est.Power  Std.Err. Wald(Power=0) Wald(Power=1)   

 Time -0.1795 0.2001 -0.8970 -5.8951   

 DArea -0.1346 0.0893 -1.5073 -12.7069   

 CCost -0.1762 0.0942 -1.8698 -12.4817   

 Dwgs -0.2507 0.2402 -1.0440 -5.2075   

 Length  -0.1975 0.1073 -1.8417 -11.1653   

 Spans -0.3744 0.2594 -1.4435 -5.2991   
  LRT df p.value   
 LR test, all lambda equal 0 8.121991 6 0.2293015   

 LR test, all lambda equal 1 283.184024 6 0.0000000   

 Using the Box-Cox method to transform the predictor and response variables simul-
taneously toward multivariate normality, results in values of each l close to 0. Thus, 
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we shall transform each variable using the log transformation. Figure  6.40  shows a 
scatter plot matrix of the log-transformed response and predictor variables. The pair-
wise relationships in Figure  6.40  are much more linear than those in Figure  6.39 . 
There is no longer any evidence of nonconstant variance in the top row of plots.  

 We next consider a multiple linear regression model based on the log-transformed 
data, namely,

   0 1 1 2 2 3 3 4 4

5 5

log( ) log( ) log( ) log( ) log( )

log( )

Y x x x x

x e

b b b b b

b

= + + + +
+ +

   (6.28)   

 Figure  6.41  contains scatter plots of the standardized residuals against each predic-
tor and the fitted values for model (6.28). Each of the plots in Figure  6.41  shows a 
random pattern. Thus, model (6.28) appears to be a valid model for the data.  
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  Figure 6.39    Scatter plot matrix of the response variable and each of the predictors       
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 Figure  6.42  contains a plot of log(Time) against the fitted values. The straight-
line fit to this plot provides a reasonable fit. This provides further evidence that 
model (6.28) is a valid model for the data.  

 Figure  6.43  shows the diagnostic plots provided by R for model (6.28). These 
plots further confirm that model (6.28) is a valid model for the data.  

 The dashed vertical line in the bottom right-hand plot of Figure  6.43  is the 
usual cut-off for declaring a point of high leverage (i.e.,  2 ́  (p + 1)/n = 12/45 = 0.267)  . 
Thus, there is a bad leverage point (i.e., case 22) that requires further 
investigation. 

 Figure  6.44  contains the recommended marginal model plots for model (6.28). 
The nonparametric estimates of each pair-wise relationship are marked as solid 
curves, while the smooths of the fitted values are marked as dashed curves. There 
is some curvature present in the top three plots which is not present in the smooths 
of the fitted values. However, at this stage we shall continue under the assumption 
that (6.28) is a valid model.  

  Figure 6.40    Scatter plot matrix of the log-transformed data       
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  Figure 6.41    Plots of the standardized residuals from model (6.28)       
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  Figure 6.42    A plot of log(Time) against fitted values with a straight line added       
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 Given below is the output from R associated with fitting model (6.28). 

Regression output from R

 Call:  
 lm(formula = log(Time) ~ log(DArea) + log(CCost) + log(Dwgs) + 
log(Length) + log(Spans))   

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 2.28590 0.61926 3.691 0.00068 ***   
 log(DArea) -0.04564 0.12675 -0.360 0.72071   
 log(CCost) 0.19609 0.14445 1.358 0.18243   
 log(Dwgs) 0.85879 0.22362 3.840 0.00044 ***   
 log(Length) -0.03844 0.15487 -0.248 0.80530   
 log(Spans) 0.23119 0.14068 1.643 0.10835   
 ---   
 Residual standard error: 0.3139 on 39 degrees of freedom   
 Multiple R-Squared: 0.7762, Adjusted R-squared: 0.7475   
 F-statistic: 27.05 on 5 and 39 DF, p-value: 1.043e-11  

 Notice that while the overall F-test for model (6.28) is highly statistically 
significant (i.e., has a very small p-value), only one of the estimated regression 

  Figure 6.43    Diagnostic plots from R for model (6.28)       
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coefficients is statistically significant (i.e., log(Dwgs) with a p-value < 0.001). 
Even more troubling is the fact that the estimated regression coefficients for 
log(DArea) and log(Length) are of the wrong sign (i.e., negative), since longer 
bridges or bridges with larger area should take a longer rather than a shorter 
time to design. 

 Finally, we show in Figure  6.45  the added-variable plots associated with model 
(6.28). The lack of statistical significance of the predictor variables other than 
log(Dwgs) is evident from Figure  6.45 .  

 When two or more highly correlated predictor variables are included in a 
regression model, they are effectively carrying very similar information about the 
response variable. Thus, it is difficult for least squares to distinguish their sepa-
rate effects on the response variable. In this situation the overall F-test will be 
highly statistically significant but very few of the regression coefficients may 
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  Figure 6.44    Marginal model plots for model (6.28)       
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be statistically significant. Another consequence of highly correlated predictor 
variables is that some of the coefficients in the regression model are of the oppo-
site sign than expected. 

 The output from R below gives the correlations between the predictors in model 
(6.28). Notice how most of the correlations are greater than 0.8. 

Output from R: Correlations between the predictors in (6.28)

   logDArea logCCost logDwgs logLength logSpans   
 logDArea 1.000 0.909 0.801 0.884 0.782   
 logCCost 0.909 1.000 0.831 0.890 0.775   
 logDwgs 0.801 0.831 1.000 0.752 0.630   
 logLength 0.884 0.890 0.752 1.000 0.858   
 logSpans 0.782 0.775 0.630 0.858 1.000   

  Figure 6.45    Added-variable plots for model (6.28)       
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  6.4.1 Multicollinearity and Variance Inflation Factors 

 First, consider a multiple regression model with two predictors

0 1 1 2 2Y x x eb b b= + + +
     

 Let  r  
12

  denote the correlation between  x  
1
  and  x  

2
  and   

jx
S    denote the standard devia-

tion of  x  
j
 . Then it can be shown that

  

2

2 2
12

1ˆVar( ) 1,2
1 ( 1)

j

j

x

j
r n S

s
= × =

− −
β

   

 Notice how the variance of   ˆ
j

b    gets larger as the absolute value of  r  
12

  increases. 
Thus,  correlation amongst the predictors increases the variance of the estimated 

regression coefficients . For example, when  2
12 0.99r =     the variance of  ˆ

j
b   is 

 
2 2

12

1 1
50.25

1 1 0.99r
= =

− −
    times larger than it would be if   2

12 0r =   . The term   
2

12

1

1 r−
   

is called a variance inflation factor (VIF). 
 Next consider the general multiple regression model 

  0 1 1 2 2 ...
p p

Y x x x eb b b b= + + + + +
   

 Let   R
j
 2       denote the value of   R 2   obtained from the regression of  x  

j
  on the other  x ’s (i.e., 

the amount of variability explained by this regression). Then it can be shown that 

  

2

2 2

1ˆVar( ) 1,...,
1 ( 1)

j

j

j x

j p
R n S

s
= × =

− −
β

   

 The term 1/(1–   R
j
 2      ) is called the  j th  variance inflation factor (VIF) . 

 The variance inflation factors for the bridge construction example are as follows: 

  log(DArea) log(CCost) log(Dwgs) log(Length) log(Spans)   
  7.164619 8.483522 3.408900 8.014174 3.878397   

 A number of these variance inflation factors exceed 5, the cut-off often used, and so 
the associated regression coefficients are poorly estimated due to multicollinearity. 

 We shall return to this example in Chapter 7.   

  6.5  Case Study: Effect of Wine Critics’ Ratings on Prices 

of Bordeaux Wines  

 We next answer the questions in Section 1.1.4. In particular, we are interested in 
the effects of an American wine critic, Robert Parker and an English wine critic, 
Clive Coates on the London auction prices of Bordeaux wines from the 2000 
vintage. 
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  Part (a)  

 Since interest centres on estimating the percentage effect on price of a 1% increase in 
ParkerPoints and a 1% increase in CoatesPoints we consider the following model 

   

0 1 1 2 2 3 3 4 4 5 5

6 6 7 7

log( ) log( ) log( )Y x x x x x

x x e

b b b b b b

b b

= + + + + +
+ + +

  
 (6.29)   

 where 

  Y  = Price = the price (in pounds sterling) of 12 bottles of wine   
  x  

 1 
  = ParkerPoints = Robert Parker’s rating of the wine (out of 100)   

  x  
 2 
  = CoatesPoints = Clive Coates’ rating of the wine (out of 20)   

  x  
 3 
  =  P95andAbove = 1 (0) if the wine scores 95 or above from Robert Parker 

(otherwise)   
  x  

 4 
  = FirstGrowth = 1 (0) if the wine is a First Growth (otherwise)   

  x  
 5 
  = CultWine = 1 (0) if the wine is a cult wine (otherwise)   

  x  
 6 
  = Pomerol = 1 (0) if the wine is from Pomerol (otherwise)   

  x  
 7 
  = VintageSuperstar = 1 (0) if the wine is a vintage superstar (otherwise)   

 Recall from Chapter 1 that Figure 1.9 contains a matrix plot of log(Price), 
log(Parker’s ratings) and log(Coates ratings), while Figure 1.10 shows box plots of 
log(Price) against each of the dummy variables. 

 Figure  6.46  contains plots of the standardized residuals against each predictor 
and the fitted values for model (6.29). The plots are in the form of scatter plots for 
real valued predictors and box plots for predictors in the form of dummy variables. 
Each of the scatter plots in Figure  6.46  shows a random pattern. In addition, the box 
plots show that the variability of the standardized residuals is relatively constant 
across both values of each dummy predictor variable. Thus, model (6.29) appears 
to be a valid model for the data.  

 Figure  6.47  contains a plot of log(Price) against the fitted values. The straight-
line fit to this plot provides a reasonable fit. This provides further evidence that 
model (6.29) is a valid model for the data.  

 Figure  6.48  shows the diagnostic plots provided by R for model (6.29). These 
plots further confirm that model (6.29) is a valid model for the data. The dashed 
vertical line in the bottom right-hand plot of Figure  6.48  is the usual cut-off 
for declaring a point of high leverage (i.e.,   2 × (p + 1)/n = 16/72 = 0.222  ). Case 67, 
Le Pin is a bad leverage point.  

 Figure  6.49  contains the recommended marginal model plots for model (6.29). 
Notice that the nonparametric estimates of each pair-wise relationship are marked 
as solid curves, while the smooths of the fitted values are marked as dashed curves. 
The two curves in each plot match very well thus providing further evidence that 
(6.29) is a valid model.  

 Given below is the output from R associated with fitting model (6.29). Notice 
that the overall F-test for model (6.29) is highly statistically significant and 
the only estimated regression coefficient that is not statistically significant is 
P95andAbove. 



  Figure 6.46    Plots of the standardized residuals from model (M1)       
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  Figure 6.47    A plot of log(Price) against fitted values with a straight line added       
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  Figure 6.48    Diagnostic plots from R for model (6.29)       
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Regression output from R

 Call:   
 lm(formula = log(Price) ~ log(ParkerPoints) + log(Coates
Points) + P95andAbove + FirstGrowth + CultWine + Pomerol + 
VintageSuperstar)   
 Coefficients:   
   Estimate Std. Error t value Pr(>|t|)   
 (Intercept) -51.14156 8.98557 -5.692 3.39e-07 ***   
 log(ParkerPoints) 11.58862 2.06763 5.605 4.74e-07 ***   
 log(CoatesPoints) 1.62053 0.61154 2.650 0.01013 *   
 P95andAbove 0.10055 0.13697 0.734 0.46556   
 FirstGrowth 0.86970 0.12524 6.944 2.33e-09 ***   
 CultWine  1.35317 0.14569 9.288 1.78e-13 ***   
 Pomerol 0.53644 0.09366 5.727 2.95e-07 ***   
 VintageSuperstar 0.61590 0.22067 2.791 0.00692 **   
 ---   
 Residual standard error: 0.2883 on 64 degrees of freedom   
 Multiple R-Squared: 0.9278, Adjusted R-squared: 0.9199   
 F-statistic: 117.5 on 7 and 64 DF, p-value: < 2.2e-16   
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 Figure  6.50  shows the added-variable plots associated with model (6.29). Case 
53 (Pavie) appears to be highly influential in the added variable plot for 
log(CoatesPoints), and, as such, it should be investigated. Other outliers are evident 
from the added variable plots in Figure  6.50 . We shall continue under the assump-
tion that (6.29) is a valid model.  

 The variance inflation factors for the training data set are as follows: 

 log(ParkerPoints) log(CoatesPoints) P95andAbove FirstGrowth   
   5.825135  1.410011 4.012792 1.625091   
 CultWine Pomerol VintageSuperstar   
 1.188243 1.124300 1.139201   

  Figure 6.49    Marginal model plots for model (6.29)       
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 Only one of the variance inflation factors exceeds 5 and so multicollinearity is only 
a minor issue. 

 Since (6.29) is a valid model and the only estimated regression coefficient that 
is not statistically significant is  x  

3
 , P95andAbove we shall drop it from the model 

and consider the reduced model 

   
0 1 1 2 2 4 4 5 5

6 6 7 7

log( ) log( ) log( )Y x x x x

x x e

b b b b b

b b

= + + + +
+ + +    (6.30)   

 Given below is the output from R associated with fitting model (6.30). 

Regression output from R

 Call:   
 lm(formula = log(Price) ~ log(ParkerPoints) + log(CoatesPoints) +   

 FirstGrowth + CultWine + Pomerol + VintageSuperstar)   
 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) -56.47547  5.26798 -10.721 5.20e-16 ***   
 log(ParkerPoints) 12.78432 1.26915 10.073 6.66e-15 ***   

  Figure 6.50    Added-variable plots for model (6.29)       
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 log(CoatesPoints) 1.60447 0.60898 2.635 0.01052 *   
 FirstGrowth 0.86149  0.12430 6.931 2.30e-09 ***   
 CultWine 1.33601  0.14330 9.323 1.34e-13 ***   
 Pomerol 0.53619  0.09333 5.745 2.64e-07 ***   
 VintageSuperstar 0.59470 0.21800 2.728 0.00819 **   
 ---   
 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1   
 Residual standard error: 0.2873 on 65 degrees of freedom   
 Multiple R-Squared: 0.9272, Adjusted R-squared: 0.9205   
 F-statistic: 138 on 6 and 65 DF, p-value: < 2.2e-16   

 Since all the predictor variables have statistically significant  t -values, there is no 
redundancy in model (6.30) and as such we shall adopt it as our full model. Notice 
how similar the estimated regression coefficients are in models (6.29) and (6.30). 
Note that there is no real need to redo the diagnostic plots for model (6.30) since it 
is so similar to model (6.29). 

 Alternatively, we could consider a partial F-test to compare models (6.29) and 
(6.30). The R output for such a test is given below: 

 Analysis of Variance Table   

 Model 1: log(Price) ~ log(ParkerPoints) + log(CoatesPoints) + 
FirstGrowth +     CultWine + Pomerol + VintageSuperstar   

 Model 2: log(Price) ~ log(ParkerPoints) + log(CoatesPoints) + 
P95andAbove +     FirstGrowth + CultWine + Pomerol + 
VintageSuperstar   

  Res.Df RSS Df Sum of Sq F Pr(>F)   
 1 65 5.3643   
 2 64 5.3195 1 0.0448 0.5389 0.4656   

 The  p -value from the partial F-test is the same as the  t -test  p -value from model 
(6.29). This is due to the fact that only one predictor has been removed from (6.29) 
to obtain (6.30). 

  Part (b)  

 Based on model (6.30) we find that

   1.    A 1% increase in Parker points is predicted to increase price by 12.8%  
   2.    A 1% increase in Coates points is predicted to increase price by 1.6%     

  Part (c)  

 If we consider either the full model (6.29), which includes 95andAbove, or the 
final model (6.30), which does not, then the predictor variable ParkerPoints has 
the largest estimated effect on price, since it has the largest regression coeffi-
cient. This effect is also the most statistically significant, since the correspond-
ing  t -value is the largest in magnitude (or alternatively, the corresponding 
 p -value is the smallest). 
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  Part (d)  

 The claim that “in terms of commercial impact his (Coates’) influence is zero” is 
not supported by the regression model developed in (a). In particular, Clive Coates 
ratings have a statistically significant impact on price, even after adjusting for the 
influence of Robert Parker. 

  Part (e)  

 Based on the regression model in (a), there is no evidence of a statistically signifi-
cant extra price premium paid for Bordeaux wines from the 2000 vintage that score 
95 and above from Robert Parker since the coefficient of 95andAbove in the regres-
sion model is not statistically significant. 

  Part (f) 

    (i)     Wines which are unusually highly priced are those with standardized residuals 
greater than + 2. These are given in Table  6.4 .      

   (ii)     Wines which are unusually lowly priced are those with standardized residuals 
less than –2. The only such wine is given in Table  6.5 .          

  6.6 Pitfalls of Observational Studies Due to Omitted Variables  

 In this section we consider some of the pitfalls of regression analysis based on data 
from observational studies. An observational study is one in which outcomes are 
observed and no attempt is made to control or influence the variables of interest. As 
such there may be systematic differences that are not included in the regression 
model, which we shall discover, raises the issue of omitted variables. 

  6.6.1 Spurious Correlation Due to Omitted Variables 

 We begin by describing a well-known weakness of regression modeling based on 
observational data, namely that the observed association between two variables may 
be because both are related to a third variable that has been omitted from the regression 
model. This phenomenon is commonly referred to as “spurious correlation.” 

 Table 6.4    Unusually highly priced wines  

 Wine  Standardized residuals 

 Tertre-Roteboeuf  2.43 
 Le Pin  2.55 

 Table 6.5    Unusually lowly priced wines  

 Wine  Standardized residuals 

 La Fleur-Petrus  –2.73 
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 The term spurious correlation dates back to at least Pearson (1897). According 
to Stigler (2005, p. S89): 

 … Pearson studied measurements of a large collection of skulls from the Paris Catacombs, 
with the goal of understanding the interrelationships among the measurements. For each 
skull, his assistant measured the length and the breadth, and computed … the correlation 
coefficient between these measures … The correlation … turned out to be significantly 
greater than zero … But … the discovery was deflated by his noticing that if the skulls were 
divided into male and female, the correlation disappeared. Pearson recognized the general 
nature of this phenomenon and brought it to the attention of the world. When two measure-
ments are correlated, this may be because they are both related to a third factor that has 
been omitted from the analysis. In Pearson’s case, skull length and skull breadth were 
essentially uncorrelated if the factor “sex” were incorporated in the analysis.   

 Neyman (1952, pp. 143–154) provides an example based on fictitious data which 
dramatically illustrates spurious correlation. According to Kronmal (1993, p. 379), 
a fictitious friend of Neyman was interested in empirically examining the theory 
that storks bring babies and collected data on the number of women, babies born 
and storks in each of 50 counties. This fictitious data set was reported in Kronmal 
(1993, p. 383) and it can be found on the course web site in the file storks.txt. 

 Figure  6.51  shows a scatter plot of the number of babies against the number of 
storks along with the least squares fit. Fitting the following straight-line regression 
model to these data produces the output shown below. 

   0 1Babies Storks eb b= + +    (6.31)    

  Figure 6.51    A plot of two variables from the fictitious data on storks       
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  Figure 6.52    A plot of all three variables from the fictitious data on storks       
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 The regression output from R shows that there is very strong evidence of a posi-
tive linear association between the number of storks and the number of babies born 
( p -value < 0.0001). However, to date we have ignored the data available on the 
other potential predictor variable, namely, the number of women. 

Regression output from R

 Coefficients:   

  Estimate Std. Error  t value Pr(>|t|)   
 (Intercept) 4.3293  2.3225 1.864 0.068 .   
 Storks 3.6585 0.3475 10.528 1.71e-14 ***   
 ---   
 Residual standard error: 5.451 on 52 degrees of freedom   
 Multiple R-Squared: 0.6807, Adjusted R-squared: 0.6745   
 F-statistic: 110.8 on 1 and 52 DF, p-value: 1.707e-14   

 Figure  6.52  shows scatter plots of all three variables from the stork data set 
along with the least squares fits. It is apparent that there is a strong positive linear 
association between each of the three variables. Thus, we consider the following 
regression model: 

   0 1 2Babies Storks Women eb b b= + + +    (6.32)    
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 Given below is the output from R for a regression model (6.32). Notice that the 
estimated regression coefficient for the number of storks is zero to many decimal 
places. Thus, correlation between the number of babies and the number of storks 
calculated from (6.31) is said to be  spurious  as it is due to both variables being 
associated with the number of women. In other words, a predictor (the number of 
women) exists which is related to both the other predictor (the number of storks) 
and the outcome variable (the number of babies), and which accounts for all of 
the observed association between the latter two variables. The number of women 
predictor variable is commonly called either an  omitted variable  or a  confound-

ing covariate . 

Regression output from R

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 1.000e+01 2.021e+00 4.948 8.56e-06 ***   
 Women 5.000e+00 8.272e-01 6.045 1.74e-07 ***   
 Storks -6.203e-16 6.619e-01 -9.37e-16 1   
 ---   
 Residual standard error: 4.201 on 51 degrees of freedom   
 Multiple R-Squared: 0.814, Adjusted R-squared: 0.8067   
 F-statistic: 111.6 on 2 and 51 DF, p-value: < 2.2e-16    

  6.6.2 The Mathematics of Omitted Variables 

 In this section we shall consider the situation in which an important predictor is 
omitted from a regression model. We shall denote the omitted predictor variable by 
 v  and the predictor variable included in the one-predictor regression model by  x . In 
the fictitious stork data  x  corresponds to the number of storks and  v  corresponds to 
the number of women. 

 To make things as straightforward as possible we shall consider the situation in 
which  Y  is related to two predictors  x  and  v  as follows: 

   
0 1 2 · ,Y x v

Y x v eb b b= + + +    (6.33)   

 Similarly, suppose that  v  is related to  x  as follows: 

   0 1 ·v x
v x ea a= + +    (6.34)   

 Substituting (6.34) into (6.33) we will be able to discover what happens if omit  v  
from the regression model. The result is as follows: 

   ( ) ( ) ( )0 2 0 1 2 1 · , 2 ·Y x v v x
Y x e eb b a b b a b= + + + + +    (6.35)   
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 Notice that the regression coefficient of  x  in (6.35) is the sum of two terms, namely, 
  b
1  
+ b

2  
α

1
  . We next consider two distinct cases:

   1.      a
1
 = 0 and/or b

2
= 0 :  Then the omitted variable has no effect on the regression 

model, which includes just  x  as a predictor.  
   2.   a

1
 ≠ 0 and b

2
≠ 0     . Then the omitted variable has an effect on the regression 

model, which includes just  x  as a predictor. For example,  Y  and  x  can be strongly 
linearly associated (i.e., highly correlated) even when b

1
 = 0. (This is exactly the 

situation in the fictitious stork data.) Alternatively,  Y  and  x  can be strongly nega-
tively associated even when b

1
 > 0  .      

  6.6.3 Omitted Variables in Observational Studies 

 Omitted variables are most problematic in observational studies. We next look at 
two real examples, which exemplify the issues. 

 The first example is based on a series of papers (Cochrane et al., 1978; Hinds, 
1974; Jayachandran and Jarvis, 1986) that model the relationship between the 
prevalence of doctors and the infant mortality rate. The controversy was the subject 
of a 1978  Lancet  editorial entitled “The anomaly that wouldn’t go away.” In the 
words of one of the authors of the original paper, Selwyn St Leger (2001): 

 When Archie Cochrane, Fred Moore and I conceived of trying to relate mortality in devel-
oped countries to measures of health service provision little did we imagine that it would 
set a hare running 20 years into the future. … The hare was not that a statistical association 
between health service provision and mortality was absent. Rather it was the marked posi-
tive correlation between the prevalence of doctors and infant mortality. Whatever way we 
looked at our data we could not make that association disappear. Moreover, we could iden-
tify no plausible mechanism that would give rise to this association.   

 Kronmal (1993, p. 624) reports that Sankrithi et al. (1991) found a significant nega-
tive association ( p  < 0.001) between infant mortality rate and the prevalence of 
doctors after adjusting for population size. Thus, this spurious correlation was due 
to an omitted variable. 

 The second example involves a series of observational studies reported in Pettiti 
(1998) which find evidence of beneficial effects of hormone replacement therapy 
(HRT) and estrogen replacement therapy (ERT) on coronary heart disease (CHD). 
On the other hand, Pettiti (1998), reports that “a randomized controlled trial of 2763 
postmenopausal women with established coronary disease, treatment with estrogen 
plus progestin did not reduce the rate of CHD events”. Pettiti (1998) points to the 
existence of omitted variables in the following discussion of the limitations of 
observational studies in this situation: 

 Reasons to view cautiously the observational results for CHD in users of ERT and HRT 
have always existed. Women with healthy behaviors, such as those who follow a low-fat 
diet and exercise regularly, may selectively use postmenopausal hormones. These differ-
ences in behavior may not be taken into account in the analysis of observational studies 
because they are not measured, are poorly measured, or are unmeasurable.   
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 In summary, the possibility of omitted variables should be considered when the 
temptation arises to over interpret the results of any regression analysis based on 
observational data. Stigler (2005) advises that we “discipline this predisposition (to 
accept the results of observational studies) by a heavy dose of skepticism.” We finish 
this section by reproducing the following advice from Wasserman (2004, p. 259): 

 Results from observational studies start to become believable when: (i) the results are repli-
cated in many studies; (ii) each of the studies controlled for possible confounding variables, 
(iii) there is a plausible scientific explanation for the existence of a causal relationship.     

  6.7 Exercises  

    1.    The multiple linear regression model can be written as 

  b= +Y X e   

where    Var(e) = σ2I  and   I   is the   (n × n)   identity matrix so that   Var (Y | X) = s 2 I  . 
The fitted or predicted values are given by 

    
ˆˆ Yb ′= = =′-1Y X X(X X) X HY

where   .¢ ¢= -1H X(X X) X    Show that   ( ) 2ˆVar s=Y | X H   .  

   2.    Chapter 5-2 of the award-winning book on baseball (Keri, 2006) makes exten-
sive use of multiple regression. For example, since the 30 “Major League 
Baseball teams play eighty-one home games during the regular season and 
receive the largest share of their income from the ticket sales associated with 
these games” the author develops a least squares regression model to predict  Y , 
yearly income (in 2005 US dollars) from ticket sales for each team from home 
games each year. Ticket sales data for each team for each of the years from 1997 
to 2004 are used to develop the mode1. Thus, there are 30 × 8   = 240   rows of 
data. Twelve potential predictor variables are identified as follows: Six predictor 
variables measure team quality, namely: 

  x  
1
  = Number of games won in current season   

  x  
2
  = Number of games won in previous season   

  x  
3
  = Dummy variable for playoff appearance in current season   

  x  
4
  = Dummy variable for playoff appearance in previous season   

  x  
5
  = Number of winning seasons in the past 10 years   

  x  
6
  = Number of playoff appearances in the past 10 years       

 Three predictors measure stadium of quality, namely: 

  x  
7
  = Seating capacity   

  x  
8
  = Stadium quality rating   

  x  
9
  = Honeymoon effect   
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 Two predictors measure market quality, namely: 
  x  

10
  = Market size   

  x  
11

  = Per-capita income   

 Finally,  x  
12

  = Year is included to allow for inflation. The author found that  “seven 

of these (predictor) variables had a statistically significant impact on attendance 

revenue”  (i.e., had a  t -statistic significant at least at the 10% level). Describe in 
detail two major concerns that potentially threaten the validity of the model.

   3.    The analyst was so impressed with your answers to Exercise 5 in Section 3.4 
that your advice has been sought regarding the next stage in the data analy-
sis, namely an analysis of the effects of different aspects of a car on its sug-
gested retail price. Data are available for all 234 cars on the following 
variables: 
  Y  = Suggested Retail Price;  x  

1
  = Engine size;  x  

2
  = Cylinders;   

  x  
3
  = Horse power;  x  

4
  = Highway mpg;  x  

5
  = Weight          x  

6
  = Wheel Base; 

and  x  
7
  = Hybrid, a dummy variable which is 1 for so-called hybrid cars. The first 

model considered for these data was 

 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7Y x x x x x x x eb b b b b b b b= + + + + + + + +    (6.36)     

 Output from model (6.36) and associated plots (Figures 6.53 and 6.54) appear 
on the following pages   .

   (a)    Decide whether (6.36) is a valid model. Give reasons to support your answer.  
   (b)     The plot of residuals against fitted values produces a curved pattern. Describe 

what, if anything can be learned about model (6.36) from this plot.  
   (c)    Identify any bad leverage points for model (6.36).             

 The multivariate version of the Box-Cox method was used to transform the pre-
dictors, while a log transformation was used for the response variable to improve 
interpretability. This resulted in the following model 

     

0.25
0 1 1 2 2 3 3

4 5 5 6 6 7 7
4

log( ) log( ) log( )

1 log( )

Y x x x

x x x e
x

b b b b

b b b b

= + + +

⎛ ⎞+ + + + +⎝ ⎠

    
(6.37)

 Output from model (6.37) and associated plots (Figures 6.55, 6.56 and 6.57) 
appear on the following pages. In that output a “t” at the start of a variable name 
means that the variable has been transformed according to model (6.37).  

   (d)    Decide whether (6.37) is a valid model.  
   (e)      To obtain a final model, the analyst wants to simply remove the two insig-

nificant predictors (1/x
4
) (i.e., tHighwayMPG) and   log (x

6
)   (i.e., tWheel-

Base) from (6.37). Perform a partial F-test to see if this is a sensible 
strategy.  



6.7 Exercises 217

   (f)      The analyst’s boss has complained about model (6.37) saying that it fails to 
take account of the manufacturer of the vehicle (e.g., BMW vs Toyota). 
Describe how model (6.37) could be expanded in order to estimate the effect 
of manufacturer on suggested retail price.     

 Output from R output from model (6.36) 

   Call:   
 lm(formula = SuggestedRetailPrice ~ EngineSize + Cylinders +   
 Horsepower + HighwayMPG + Weight + WheelBase + Hybrid)   
 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) -68965.793 16180.381 -4.262 2.97e-05 ***   
 EngineSize -6957.457 1600.137 -4.348 2.08e-05 ***   
 Cylinders 3564.755 969.633 3.676 0.000296 ***   
 Horsepower 179.702 16.411 10.950 < 2e-16  ***   

  Figure 6.53    Matrix plot of the variables in model (6.36)       
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 HighwayMPG 637.939 202.724 3.147 0.001873 **   
 Weight 11.911 2.658 4.481 1.18e-05 ***   
 WheelBase 47.607 178.070 0.267 0.789444   
 Hybrid 431.759 6092.087 0.071 0.943562   

 Residual standard error: 7533 on 226 degrees of freedom   
 Multiple R-squared:0.7819, Adjusted R-squared: 0.7751   
 F-statistic: 115.7 on 7 and 226 DF, p-value: < 2.2e-16   

 box.cox Transformations to Multinormality   
  Est.Power Std.Err. Wald(Power=0) Wald(Power=1)   
 EngineSize 0.2551 0.1305 1.9551 -5.7096   
 Cylinders -0.0025 0.1746 -0.0144 -5.7430   
 Horsepower -0.0170 0.1183 -0.1439 -8.5976   
 HighwayMPG -1.3752 0.1966 -6.9941 -12.0801   
 Weight 1.0692 0.2262 4.7259 0.3057   
 WheelBase 0.0677 0.6685 0.1012 -1.3946   
  LRT df p.value   
 LR test, all lambda equal 0 78.4568 6 7.438494e-15   
 LR test, all lambda equal 1 305.1733 6 0.000000e+00   

    Figure 6.54   Diagnostic plots from model (6.36)       
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  Output from R for model (6.37)  

   Call:
lm(formula = tSuggestedRetailPrice ~ tEngineSize + tCylinders + 
tHorsepower + tHighwayMPG + Weight + tWheelBase + Hybrid)
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.119e+00 7.492e-01 8.168 2.22e-14 ***
tEngineSize -2.247e+00 3.352e-01 -6.703 1.61e-10 ***
tCylinders 3.950e-01 1.165e-01 3.391 0.000823 ***
tHorsepower 8.951e-01 8.542e-02 10.478 < 2e-16 ***
tHighwayMPG -2.133e+00 4.403e+00 -0.484 0.628601
Weight 5.608e-04 6.071e-05 9.237 < 2e-16 ***
tWheelBase -1.894e+01 4.872e+01 -0.389 0.697801 
Hybrid 1.330e+00 1.866e-01 7.130 1.34e-11 ***

  Figure 6.55    Matrix plot of the variables in model (6.37)       
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  Figure 6.56    Diagnostic plots from model (6.37)       
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Residual standard error: 0.1724 on 226 degrees of freedom
Multiple R-Squared: 0.872, Adjusted R-squared: 0.868 
F-statistic: 219.9 on 7 and 226 DF, p-value: < 2.2e-16                                                

 Output from R for model (6.37) 

   vif(m2)   
  tEngineSize tCylinders tHorsepower tHighwayMPG Weight
  8.67 7.17 5.96 4.59 8.20 
 tWheelBase Hybrid  
  4.78 1.22 

 Call:  
 lm(formula = tSuggestedRetailPrice ~ tEngineSize 
+ tCylinders + tHorsepower + Weight + Hybrid)   
 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 5.422e+00 3.291e-01 16.474 <2e-16  ***   
 tEngineSize -1.591e+00 3.157e-01 -5.041 9.45e-07 ***   
 tCylinders 2.375e-01 1.186e-01 2.003 0.0463 *   



 tHorsepower 9.049e-01 8.305e-02 10.896 <2e-16  ***   
 Weight 5.029e-04 5.203e-05 9.666 <2e-16 ***   
 Hybrid 6.340e-01 1.080e-01 5.87 1.53e-08 ***   
---
 Residual standard error: 0.1781 on 228 degrees of freedom   
 Multiple R-squared: 0.862, Adjusted R-squared: 0.859   
 F-statistic: 284.9 on 5 and 228 DF, p-value: < 2.2e-16  

   4.    A book on robust statistical methods published in June 2006 considers regres-
sion models for a data set taken from Jalali-Heravi and Knouz (2002). The aim 
of this modeling is to predict a physical property of chemical compounds called 
the Krafft point based on four potential predictor variables using a data set of 
size  n  = 32. According to Maronna, Martin and Yohai (2006, p. 380) 

 The Krafft point is an important physical characteristic of the compounds called surfactants, 
establishing the minimum temperature at which a surfactant can be used.       

  Figure 6.57    Marginal model plots from model (6.37)       
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 The authors of the original paper sought to find a regression model to predict: 
  Y  = Krafft Point (KPOINT) 
 from 
  x  

1
  = Randic Index (RA)   

  x  
2
  = Heat of formation (HEAT)   

  x  
3
  = Reciprocal of volume of the tail of the molecule (VTINV)   

  x  
4
  = Reciprocal of Dipole Moment (DIPINV)   

 The first model considered by Jalali-Heravi and Knouz (2002) was 

   0 1 1 2 2 3 3 4 4Y x x x x eb b b b b= + + + + +    (6.38)   

 Output from model (6.38) and associated plots (Figures 6.58, 6.59 and 6.60) 
appear on the following pages.

  Figure 6.58    Matrix plot of the variables in model (6.38)       
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   (a)     Decide whether (6.38) is a valid model.  
   (b)     The plots of standardized residuals against RA and VTINV produce curved 

patterns. Describe what, if anything can be learned about model (6.38) from 
these plots. Give a reason to support your answer.  

   (c)     Jalali-Heravi and Knouz (2002) give “four criteria of correlation coefficient 
( r ), standard deviation ( s ), F value for the statistical significance of the 
model and the ratio of the number of observations to the number of descrip-
tors in the equation” for choosing between competing regression models. 
Provide a detailed critique of this suggestion.     

 Output from R for model (6.38) 

   Call:   
 lm(formula = KPOINT ~ RA + VTINV + DIPINV + HEAT)   
 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 7.031e+01 3.368e+01 2.088 0.046369 *   
 RA 1.047e+01 2.418e+00 4.331 0.000184 ***   
 VTINV  9.038e+03 4.409e+03 2.050 0.050217 .   

  Figure 6.59    Diagnostic plots from model (6.38)       
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 DIPINV -1.826e+03 3.765e+02 -4.850 4.56e-05 ***   
 HEAT 3.550e-01 2.176e-02 16.312 1.66e-15 ***   

 Residual standard error: 3.919 on 27 degrees of freedom   
 Multiple R-Squared: 0.9446, Adjusted R-squared: 0.9363   
 F-statistic: 115 on 4 and 27 DF, p-value: < 2.2e-16
vif(m1)   
  RA VTINV DIPINV HEAT   
 25.792770 22.834190 13.621363 2.389645  

   5.    An avid fan of the PGA tour with limited background in statistics has sought 
your help in answering one of the age-old questions in golf, namely,  what is the 

relative importance of each different aspect of the game on average prize money 

in professional golf ?     

 The following data on the top 196 tour players in 2006 can be found on the book 
web site in the file pgatour2006.csv:   

  Y , PrizeMoney = average prize money per tournament   
  x  

1
 , Driving Accuracy is the percent of time a player is able to hit the fairway with 
his tee shot.   

  x  
2
 , GIR, Greens in Regulation is the percent of time a player was able to hit the 
green in regulation. A green is considered hit in regulation if any part of the 

  Figure 6.60    Plots of standardized residuals from model (6.38)       
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ball is touching the putting surface and the number of strokes taken is two or 
less than par.   

  x  
3
 , Putting Average measures putting performance on those holes where the 
green is hit in regulation (GIR). By using greens hit in regulation the effects 
of chipping close and one putting are eliminated.   

  x  
4
 , Birdie Conversion% is the percent of time a player makes birdie or better 
after hitting the green in regulation.   

  x  
5
 , SandSaves% is the percent of time a player was able to get “up and down” 
once in a greenside sand bunker.   

  x  
6
 , Scrambling% is the percent of time that a player misses the green in regula-
tion, but still makes par or better.   

  x  
7
 , PuttsPerRound is the average total number of putts per round.(  http://www.
pgatour.com/r/stats/;     accessed March 13, 2007)  

   (a)     A statistician from Australia has recommended to the analyst that they not 
transform any of the predictor variables but that they transform  Y  using the 
log transformation. Do you agree with this recommendation? Give reasons 
to support your answer.  

   (b)     Develop a valid full regression model containing all seven potential predic-
tor variables listed above. Ensure that you provide justification for your 
choice of full model, which includes scatter plots of the data, plots of stand-
ardized residuals, and any other relevant diagnostic plots.  

   (c)     Identify any points that should be investigated. Give one or more reasons to 
support each point chosen.  

   (d)    Describe any weaknesses in your model.  
   (e)     The golf fan wants to remove all predictors with insignificant  t -values from the 

full model in a single step. Explain why you would not recommend this 
approach.     

 In the next chapter, we will consider variable selection techniques in order to 
remove any redundancy from this regression model.              



   Chapter 7   

  Variable Selection         

 In this chapter we consider methods for choosing the “best” model from a class of 
multiple regression models using what are called variable selection methods. 
Interestingly, while there is little agreement on how to define “best,” there is general 
agreement in the statistics literature on the consequences of variable selection on 
subsequent inferential procedures, (i.e., tests and confidence intervals). 

 We begin by introducing some terminology. The full model is the following 
multiple regression model containing all  m  potential predictor variables:  

     Y = b
0
 + b

1
x

1
 + b

2
x

2
 + … + b

m
 x

m
 + e    (7.1)

 Throughout this chapter we shall assume that the full model is a valid regression 
model. 

 Variable selection methods aim to choose the subset of the predictors that is 
“best” in a given sense. In general, the more predictor variables included in a valid 
model the lower the bias of the predictions, but the higher the variance. Including 
too many predictors in a regression model is commonly called over-fitting while the 
opposite is called under-fitting. Hesterberg, Choi, Meier and Fraley (2008) make 
the following important point about the different goals of variable selection and 
prediction accuracy. 

 If the main interest is in finding an interpretable model or in identifying the ‘true’ underly-
ing model as closely as possible, prediction accuracy is of secondary importance (to vari-
able selection). … On the other hand, if prediction is the focus of interest, it is usually 
acceptable for the selected model to contain some extra variables, as long as the coeffi-
cients of those variables are small.   

 The two key aspects of variable selection methods are:

   1.    Evaluating each potential subset of  p  predictor variables  
   2.    Deciding on the collection of potential subsets     

 We begin by considering the first aspect. 
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228 7 Variable Selection

  7.1 Evaluating Potential Subsets of Predictor Variables  

 We shall discuss four criteria for evaluating subsets of predictor variables. 

  7.1.1 Criterion 1: R 2 -Adjusted 

 Recall from Chapter 5 that  R  2 , the coefficient of determination of the regression 
model, is defined as the proportion of the total sample variability in the  Y ’s explained 
by the regression model, that is,

  

2 SSreg RSS
1

SST SST
R = = −

   

 Adding irrelevant predictor variables to the regression equation often increases  R  2 . 
To compensate for this one can define an adjusted coefficient of determination,   R2

adj
  

  
adj

RSS

SST

2 / ( 1)
1

/ ( 1)

n p
R

n

− −
= −

−   

,

 

 where  p  is the number of predictors in the current model. In fact, it can be shown 
that adding predictor variables to the current model only leads to an increase in   R2

adj
   

if the corresponding partial  F -test statistic exceeds 1. 
 The usual practice is to choose the subset of the predictors that has the  highest  

value of   R2
adj

  . It can be shown that this is equivalent to choosing the subset of the 

predictors with the  lowest  value of   2 RSS

1
S

n p
=

− −
  , where  p  is the number of predictors 

in the subset. 
 We shall see that  choosing the subset of the predictors that has the highest value 

of    R2
adj

    tends towards over-fitting . For example, suppose that the maximum value is 
  R2

adj
   = 0.692 for a subset of  p  = 10 predictors,   R2

adj
   = 0.691 for a subset of  p  = 9 

predictors and   R2
adj

   = 0.541 for a subset of  p  = 8 predictors. Even though   R2
adj

   
increases when we go from 9 to 10 predictors there is very little improvement in fit 
and so the nine-predictor subset is generally preferred. 

 The other three criteria are based on likelihood theory when both the predictors and 
the response are normally distributed. As such we briefly review this theory next. 

  Maximum Likelihood applied to Multiple Linear Regression  

 Suppose that   y
i 
, x

1i 
, … x

pi
   are the observed values of normal random variables.

Then,   ( )2
1 0 1 1| , ~ , .

i i pi i p pi
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 i 
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 Assuming the  n  observations are independent, then given  Y  the likelihood func-
tion is the function of the unknown parameters   b

0
 , b

1
 , … , b

p
 , s 2   given by 
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 The log-likelihood function is given by 
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 Notice that   b
0 
,b

1
 , … , b

p
   are only included in the third term of this last equation. 

Thus, the maximum likelihood estimates of   b
0 
,b

1
 , … , b

p
   can be obtained by mini-

mizing this third term, that is, by minimizing the residual sum of squares. Thus, the 
maximum likelihood estimates of   b

0 
,b

1
 , … , b

p
   are the same as the least squares 

estimates. With   b
0 
,b

1
 , … , b

p
   equal to their least squares estimates, the last equation 

becomes 
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 Differentiating the last log-likelihood equation with respect to   s 2   and setting the 
result to zero gives the maximum likelihood estimate of   s 2   as 

  

RSS2
MLE

ˆ .
n

s =
   

 Notice that this estimate differs slightly from our usual estimate of   s 2  , namely, 

  
RSS

2 1
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 Substituting the result for the maximum likelihood estimate of   s 2   back into the 
expression for the log-likelihood we find that the likelihood associated with the 
maximum likelihood estimates is given by 

  
( )2

0 1

RSSˆ ˆ ˆ ˆlog ( , , , , | ) log(2 ) log( )
2 2 2

p

n n n
L Y

n
b b b s p= − − −…

    

  7.1.2 Criterion 2: AIC, Akaike’s Information Criterion 

 Akaike’s information criterion (AIC) can be motivated in two ways. The most 
popular motivation seems to be based on balancing goodness of fit and a penalty 
for model complexity. AIC is defined such that  the smaller the value of AIC the 

better the model . A measure of goodness of fit such that the smaller the better is 
minus one times the likelihood associated with the fitted model, while a measure of 
complexity is  K , the number of estimated parameters in the fitted model. AIC is 
defined to be 

 
( )AIC

2
0 1

ˆ ˆ ˆ ˆ2 log ( , , , , | )
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L Y Kb b b s = − + …

   
(7.2)

     

 where   K = p + 2,   since   b
0 
,b

1
 , … , b

p 
,s 2   are estimated in the fitted model. The 

measure of complexity is necessary since adding irrelevant predictor variables to 
the regression equation can increase the log-likelihood. We shall soon discover the 
reason for the 2 in (7.2). 

 Akaike’s original motivation for AIC is based on the Kullback-Leibler (K-L) 
information measure,  I ( f ,  g ), which is the amount of information lost when  g  (which 
depends on   q  ) is used to model  f , defined as 
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 It can also be thought as a distance measure between  f  and  g . The following mate-
rial is based on Burnham and Anderson (2004). 

 The Kullback-Leibler (K-L) information measure can be reexpressed as 
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 where  C  is an unknown constant that does not depend on the model. Thus, to compare 
the Kullback-Leibler (K-L) information measure across different models   g( y | q )   the 
quantity   E

f
 [log (g( y | q )]   needs to be estimated for each model. This quantity is 

called the relative expected K-L information. 
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 Akaike found a relationship between K-L information and likelihood theory. In 
particular, he found that the maximized log-likelihood was a biased estimate of 
  E

f
 [log (g( y | q )]   with the bias approximately equal to  K , the number of estimable 

parameters in the model   g( y | q )  . In symbols, 

  
[ ] ( )ˆˆ log( ( | )) log ( | )

f
E g y L Y Kq q= −

   

 Akaike multiplied this last result by –2, reportedly, for “historical reasons,” and 
this became Akaike’s information criterion: 
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 since  K  = ( p  + 2) parameters are estimated in the regression model. 
 Using results found earlier for the maximized likelihood, 
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 where the other terms do not depend on RSS or  p  and thus are the same for every 
model under consideration. In view of this last result, R calculates AIC using 
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AIC log 2n p
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  7.1.3 Criterion 3: AIC 
C
  , Corrected AIC 

 Hurvich and Tsai (1989) developed AIC 
C
 , a bias corrected version of AIC for use 

when the sample size is small, or when the number of parameters estimated is a 
moderate to large fraction of the sample size. Burnham and Anderson (2004) rec-
ommend that AIC 

C
  be used instead of AIC unless  n / K  > 40. Furthermore they rec-

ommend that AIC 
C
  be used in practice since as  n  gets large AIC 

C
  converges to AIC. 

AIC 
C
  is given by 
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 In our case,  K  =  p  + 2 so that 
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  When the sample size is small, or when the number of parameters estimated is a 

moderate to large fraction of the sample size, it is well-known that AIC has a ten-

dency for over-fitting since the penalty for model complexity is not strong enough.  
As such it is not surprising in these circumstances that the bias corrected version of 
AIC has a larger penalty for model complexity.  

  7.1.4 Criterion 4: BIC, Bayesian Information Criterion 

 Schwarz (1978)  proposed the Bayesian information criterion as 
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(7.3)

     

 where   K = p + 2,   the number of parameters estimated in the model. BIC is 
defined such that  the smaller the value of BIC the better the model . Comparing 
(7.3) with (7.2), we see that BIC is similar to AIC except that the factor 2 in the 
penalty term is replaced by log( n ). When   n ³  8,     log (n) > 2   and so the penalty 
term in BIC is greater than the penalty term in AIC. Thus, in these circum-
stances, BIC penalizes complex models more heavily than AIC, thus favoring 
simpler models than AIC. 

 The following discussion is based on Burnham and Anderson (2004). BIC is a 
misnomer in the sense that it is not related to information theory. Define   D BIC

i
   as 

the difference between BIC for the  ith  model and the minimum BIC value. Then, 
under the assumption that all R models under consideration have equal prior prob-
ability, it can be shown that the posterior probability of model  i  is given by 

  

( )
( )

BIC

1

exp 2
(model | data)

exp BIC 2

i

i i R

rr

p P

=

−∆
= =

−∆∑    

 In practice, BIC is generally used in a frequentist sense, thus ignoring the concepts 
of prior and posterior probabilities.  

  7.1.5 Comparison of AIC, AIC 
C
  and BIC 

 There has been much written about the relative merits of AIC, AIC 
C
  and BIC. Two 

examples of this material are given next. 
 Simonoff (2003, p. 46) concludes the following: 

 AIC and AIC 
C
  have the desirable property that they are efficient model selection criteria. 

What this means is that as the sample gets larger, the error obtained in making predic-
tions using the model chosen using these criteria becomes indistinguishable from the 
error obtained using the best possible model among all candidate models. That is, in this 
large-sample predictive sense, it is as if the best approximation was known to the data 
analyst. Other criteria, such as the Bayesian Information Criterion, BIC … do not have 
this property.   
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 Hastie, Tibshirani and Freedman (2001, p. 208) put forward the following dif-
ferent point of view: 

 For model selection purposes, there is no clear choice between AIC and BIC. BIC is asymp-
totically consistent as a selection criterion. What this means is that given a family of models, 
including the true model, the probability that BIC will select the correct model approaches 
one as the sample size   N ® ¥  . This is not the case for AIC, which tends to choose models 
which are too complex as   N ® ¥  . On the other hand, for finite samples, BIC often chooses 
models that are too simple, because of the heavy penalty on complexity.   

 A popular data analysis strategy which we shall adopt is to calculate   R2
adj

  , AIC, 
AIC 

C
  and BIC and compare the models which minimize AIC, AIC 

C
  and BIC with 

the model that maximizes   R2
adj

  .   

  7.2  Deciding on the Collection of Potential Subsets 

of Predictor Variables  

 There are two distinctly different approaches to choosing the potential subsets of 
predictor variables, namely,

   1.    All possible subsets  
   2.    Stepwise methods     

 We shall begin by discussing the first approach. 

  7.2.1 All Possible Subsets 

 This approach is based on considering all 2  m   possible regression equations and iden-
tifying the subset of the predictors of a given size that maximizes a measure of fit or 
minimizes an information criterion based on a monotone function of the residual sum 
of squares. Furnival and Wilson (1974, p. 499) developed a “simple leap and bound 
technique for finding the best subsets without examining all possible subsets.” 

  With a fixed number of terms in the regression model , all four criteria for evaluat-
ing a subset of predictor variables (  R2

adj
  , AIC, AIC 

C
  and BIC) agree that the best 

choice is the set of predictors with the smallest value of the residual sum of squares. 
Thus, for example, if a subset with a fixed number of terms maximizes   R2

adj
   (i.e., 

minimizes RSS) among all subsets of size  p , then this subset will also minimize 
AIC, AIC 

C
  and BIC among all subsets of fixed size  p . Note however, when the 

comparison is across models with different numbers of predictors the four methods 
(  R2

adj
  , AIC, AIC 

C
  and BIC) can give quite different results. 

  Example: Bridge construction (cont.)  

 Recall from Chapter 6 that our aim is to model 

  Y  = Time = design time in person-days

based on the following potential predictor variables 
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  x  
1
  = DArea = Deck area of bridge (000 sq ft) 

  x  
2
  = CCost = Construction cost ($000) 

  x  
3
  = Dwgs = Number of structural drawings 

  x  
4
  = Length = Length of bridge (ft) 

  x  
5
  = Spans = Number of spans 

 Recall further that we found that the following full model 

 

0 1 1 2 2 3 3 4 4

5 5

log( ) log( ) log( ) log( ) log( )

log( )

Y x x x x

x e

b b b b b

b

= + + + +

+ +
   (7.4)     

 is a valid model for the data. Given below again is the output from R associated 
with fitting model (7.4). 

  Regression output from R  

 Call:   
 lm(formula = log(Time) ~ log(DArea) + log(CCost) + log(Dwgs) +

 log(Length) + log(Spans))   
 Coefficients:   
  Estimate Std. Error  t value Pr(>|t|)   
 (Intercept) 2.28590 0.61926 3.691 0.00068 ***   
 log(DArea) -0.04564 0.12675 -0.360 0.72071   
 log(CCost) 0.19609 0.14445 1.358 0.18243   
 log(Dwgs) 0.85879 0.22362 3.840 0.00044 ***   
 log(Length) -0.03844 0.15487 -0.248 0.80530   
 log(Spans) 0.23119 0.14068 1.643 0.10835   
 ---   
 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1   

 Residual standard error: 0.3139  on 39 degrees of freedom   
 Multiple R-Squared: 0.7762, Adjusted R-squared: 0.7475   

 F-statistic: 27.05 on 5 and 39 DF, p-value: 1.043e-11   

 Notice that while the overall F-test for model (7.4) is highly statistically signifi-
cant, only one of the estimated regression coefficients is statistically significant 
(i.e., log(Dwgs) with a  p -value < 0.001). Thus, we wish to choose a subset of the 
predictors using variable selection. 

 We begin our discussion of variable selection in this example by identifying 
the subset of the predictors of a given size that maximizes adjusted R-squared 
(i.e., minimizes RSS). Figure  7.1  shows plots of adjusted R-squared against 
the number of predictors in the model for the optimal subsets of predictors. For 
example, the optimal subset of predictors of size 2 consists of the predictors 
log(Dwgs) and log(Spans). In addition, the model with the three predictors 
log(CCost), log(Dwgs) and log(Spans) maximizes adjusted R-squared.    

 Table  7.1  gives the values of   R2
adj

  , AIC, AIC 
C
  and BIC for the best subset of each 

size. Highlighted in bold are the minimum values of AIC, AIC 
C
  and BIC along with 

the maximum value of R2
adj

. Notice from Table  7.1  that AIC judges the predictor 
subset of size 3 to be “best” while AIC 

C
  and BIC judge the subset of size 2 to be 
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“best.” While the maximum value of R2
adj 

corresponds to the predictor subset of size 
3, using the argument described earlier we could choose the subset of size 2 to be 
“best” in terms of   R2

adj
  .       

 Regression output from R 

Call:
lm(formula = log(Time) ~ log(Dwgs) + log(Spans))

Coefficients:

 Table 7.1    Values of   R2
adj

   , AIC, AIC 
C
  and BIC for the best subset of each size  

 Subset 
size  Predictors    R2

adj
    AIC  AIC 

C
   BIC 

 1  log(Dwgs)  0.702  –94.90  –94.31  –91.28 
 2  log(Dwgs), log(Spans)  0.753  –102.37   –101.37    –96.95  
 3  log(Dwgs), log(Spans), log(CCost)   0.758    –102.41   –100.87  –95.19 
 4  log(Dwgs), log(Spans), log(CCost), 

log(DArea) 
 0.753  –100.64  –98.43  –91.61 

 5  log(Dwgs), log(Spans), log(CCost), 
log(DArea), log(Length) 

 0.748  –98.71  –95.68  –87.87 

  Figure 7.1    Plots of   R2
adj

   against subset size for the best subset of each size       
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 Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.66173 0.26871 9.905 1.49e-12 ***
log(Dwgs) 1.04163 0.15420 6.755 3.26e-08 ***
log(Spans) 0.28530 0.09095 3.137 0.00312 * 
---
Residual standard error: 0.3105 on 42 degrees of freedom
Multiple R-Squared: 0.7642,     Adjusted R-squared: 0.753 
F-statistic: 68.08 on 2 and 42 DF,  p-value: 6.632e-14

Call:
lm(formula = log(Time) ~ log(Dwgs) + log(Spans) + log(CCost))

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.3317 0.3577 6.519 7.9e-08 ***
log(Dwgs) 0.8356 0.2135 3.914 0.000336 ***
log(Spans) 0.1963 0.1107 1.773 0.083710 .
log(CCost) 0.1483 0.1075 1.380 0.175212
---
Residual standard error: 0.3072 on 41 degrees of freedom
Multiple R-Squared: 0.7747,     Adjusted R-squared: 0.7582 
F-statistic: 46.99 on 3 and 41 DF,  p-value: 2.484e-13

 Given above is the output from R associated with fitting the best models with 2 
and 3 predictor variables. Notice that both predictor variables are judged to be sta-
tistically significant in the two-variable model, while just one variable is judged to 
be statistically significant in the three-variable model. Later in this chapter we shall 
see that the  p -values obtained after variable selection are much smaller than their 
true values. In view of this, it seems that the three-variable model over-fits the data 
and as such  the two-variable model is to be preferred.   

  7.2.2 Stepwise Subsets 

 This approach is based on examining just a sequential subset of the 2  m   possible 
regression models. Arguably, the two most popular variations on this approach are 
 backward elimination  and  forward selection . 

  Backward elimination  starts with all potential predictor variables in the regres-
sion model. Then, at each step, it deletes the predictor variable such that the result-
ing model has the lowest value of an information criterion. (This amounts to 
deleting the predictor with the  largest    p -value each time.) This process is contin-
ued until all variables have been deleted from the model or the information criterion 
increases. 

  Forward selection  starts with no potential predictor variables in the regression 
equation. Then, at each step, it adds the predictor such that the resulting model has 
the lowest value of an information criterion. (This amounts to adding the predictor 
with the  smallest   p -value each time.) This process is continued until all variables 
have been added to the model or the information criterion increases. 
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 Backward elimination and forward selection consider at most   + − +( 1)m m

  − + + = +( 2) ... 1 ( 1) 2m m m of the 2  m   possible predictor subsets. Thus, backward 
elimination and forward selection do not necessarily find the model that minimizes the 
information criteria across all 2  m   possible predictor subsets. In addition, there is no guar-
antee that backward elimination and forward selection will produce the same final 
model. However, in practice they produce the same model in many different situations. 

  Example: Bridge construction (cont.)  

 We wish to perform variable selection using backward elimination and forward 
selection based on AIC and BIC. Given below is the output from R associated with 
backward elimination based on AIC. 

  Output from R: Backward Elimination based on AIC  

 Start: AIC= -98.71   
 log(Time) ~ log(DArea) + log(CCost) + log(Dwgs) + log(Length) + log

(Spans)   
  Df Sum of Sq RSS AIC   

 - log(Length) 1 0.006 3.850 -100.640   
 - log(DArea) 1 0.013 3.856 -100.562   
 <none>   3.844 -98.711   
 - log(CCost) 1 0.182 4.025 -98.634   
 - log(Spans) 1 0.266 4.110 -97.698   
 - log(Dwgs) 1 1.454 5.297 -86.277   

 Step: AIC= -100.64   
 log(Time) ~  log(DArea) + log(CCost) + log(Dwgs) + log(Spans)   

  Df Sum of Sq RSS AIC   
 - log(DArea) 1 0.020 3.869 -102.412   
 <none>   3.850 -100.640   
 - log(CCost) 1 0.181 4.030 -100.577   
 - log(Spans) 1 0.315 4.165 -99.101   
 - log(Dwgs) 1 1.449 5.299 -88.260   

 Step: AIC= -102.41   
 log(Time) ~ log(CCost) + log(Dwgs) + log(Spans)   

  Df Sum of Sq RSS AIC   
 <none>   3.869 -102.412   
 - log(CCost) 1 0.180 4.049 -102.370   
 - log(Spans) 1 0.297 4.166 -101.089   
 - log(Dwgs) 1 1.445 5.315 -90.128   

 Thus, backward elimination based on AIC chooses the model with the three 
predictors log(CCost), log(Dwgs) and log(Spans). It can be shown that backward 
elimination based on BIC chooses the model with the two predictors log(Dwgs) and 
log(Spans). 

 Forward selection based on AIC (shown below) arrives at the same model as 
backward elimination based on AIC. It can be shown that forward selection based 
on BIC arrives at the same model as backward elimination based on BIC. We are 
again faced with a choice between the two-predictor and three-predictor models 
discussed earlier. 
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  Output from R: Forward selection based on AIC  

 Start: AIC= -41.35   
 log(Time) ~ 1   
  Df Sum of Sq RSS AIC   
 + log(Dwgs) 1 12.176 4.998 -94.898   
 + log(CCost) 1 11.615 5.559 -90.104   
 + log(DArea) 1 10.294 6.880 -80.514   
 + log(Length) 1 10.012 7.162 -78.704   
 + log(Spans) 1 8.726 8.448 -71.274   
 <none>   17.174 -41.347   
 Step: AIC= -94.9   
 log(Time) ~ log(Dwgs)   
  Df Sum of Sq RSS AIC   
 + log(Spans) 1 0.949 4.049 -102.370   
 + log(CCost) 1 0.832 4.166 -101.089   
 + log(Length) 1 0.669 4.328 -99.366   
 + log(DArea) 1 0.476 4.522 -97.399   
 <none>   4.998 -94.898   
 Step: AIC= -102.37   
 log(Time) ~ log(Dwgs) + log(Spans)   
  Df Sum of Sq RSS AIC   
 + log(CCost) 1 0.180 3.869 -102.412   
 <none>   4.049 -102.370   
 + log(DArea) 1 0.019 4.030 -100.577   
 + log(Length) 1 0.017 4.032 -100.559   
 Step: AIC= -102.41   
 log(Time) ~ log(Dwgs) + log(Spans) + log(CCost)   
  Df Sum of Sq RSS AIC   
 <none>   3.869 -102.412   
 + log(DArea) 1 0.020 3.850 -100.640   
 + log(Length) 1 0.013 3.856 -100.562    

  7.2.3 Inference After Variable Selection 

 An important caution associated with variable selection (or model selection as it is 
also referred to) is that the selection process changes the properties of the estima-
tors as well as the standard inferential procedures such as tests and confidence 
intervals. The regression coefficients obtained after variable selection are biased. In 
addition, the  p -values obtained after variable selection from F- and  t -statistics are 
generally much smaller than their true values. These issues are well summarized in 
the following quote from Leeb and Potscher (2005, page 22): 

 The aim of this paper is to point to some intricate aspects of data-driven model selection that 
do not seem to have been widely appreciated in the literature or that seem to be viewed too 
optimistically. In particular, we demonstrate innate difficulties of data-driven model selection. 
Despite occasional claims to the contrary, no model selection procedure—implemented on a 
machine or not—is immune to these difficulties. The main points we want to make and that 
will be elaborated upon subsequently can be summarized as follows:  
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   1.     Regardless of sample size, the model selection step typically has a dramatic effect on 
the sampling properties of the estimators that can not be ignored. In particular, the 
sampling properties of post-model-selection estimators are typically significantly differ-
ent from the nominal distributions that arise if a fixed model is supposed.  

   2.     As a consequence, naive use of inference procedures that do not take into account the 
model selection step (e.g., using standard t-intervals as if the selected model had been 
given prior to the statistical analysis) can be highly misleading.       

  7.3 Assessing the Predictive Ability of Regression Models  

 Given that the model selection process changes the properties of the standard infer-
ential procedures, a standard approach to assessing the predictive ability of differ-
ent regression models is to evaluate their performance on a new data set (i.e., one 
not used in the development of the models). In practice, this is often achieved by 
randomly splitting the data into:

   1.    A training data set  
   2.    A test data set     

 The training data set is used to develop a number of regression models, while the 
test data set is used to evaluate the performance of these models. We illustrate these 
steps using the following example. 

  Example: Prostate cancer  

 Hastie, Tibshirani and Friedman (2001) analyze data taken from Stamey et al. 
(1989). According to Hastie, Tibshirani and Friedman: 

 The goal is to predict the log-cancer volume (lacavol) from a number of measurements 
including log prostate weight (lweight), age, log of benign prostatic hyperplasia (lpbh), 
seminal vesicle invasion (svi), log of capsular penetration (lcp), Gleason score (gleason), 
and percent of Gleason scores 4 or 5 (pgg45).   

 Hastie, Tibshirani and Friedman (2001, p. 48) “randomly split the dataset into a 
training set of size 67 and a test set of size 30.” These data sets can be found on the 
book web site in the files prostateTraining.txt and postateTest.txt. We first consider 
the training set. 

  7.3.1 Stage 1: Model Building Using the Training Data Set 

 We begin by plotting the training data. Figure  7.2  contains a scatter plot matrix of 
response variable and the eight predictor variables.    

Looking at Figure  7.2 , we see that the relationship between the response variable 
(lpsa) and each of the predictor variables appears to be linear. There is also no evi-
dence of nonlinearity amongst the eight predictor variables. Thus we shall consider 
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the following full model with all eight potential predictor variables for the training 
data set:

 

0 1 2 3 4 5

6 7 8

lpsa lcavol lweight age lbph svi

lcp gleason pgg45 e

b b b b b b

b b b

= + + + + +

+ + + +
   (7.5)    

 Figure  7.3  contains scatter plots of the standardized residuals against each pre-
dictor and the fitted values for model (7.5). Each of the plots in Figure  7.3  shows a 
random pattern. Thus, model (7.5) appears to be a valid model for the data.    

 Figure  7.4  contains a plot of lpsa against the fitted values. The straight-line fit to 
this plot provides a reasonable fit. This provides further evidence that model (7.5) 
is a valid model for the data.    

  Figure 7.2    Scatter plot matrix of the response variable and each of the predictors       
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  Figure 7.3    Plots of the standardized residuals from model (7.5)       
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  Figure 7.4    A plot of lpsa against fitted values from (7.5) with a straight line added       
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 Figure  7.5  shows the diagnostic plots provided by R for model (7.5). Apart from 
a hint of decreasing error variance, these plots further confirm that model (7.5) is a 
valid model for the data.    

 The dashed vertical line in the bottom right-hand plot of Figure  7.5  is the usual 
cut-off for declaring a point of high leverage (i.e.,   2 × ( p+1)/n = 18/67 = 0.269  ). 
Thus, there are no bad leverage points. 

 Figure  7.6  contains the recommended marginal model plots for model (7.5). The 
nonparametric estimates of each pair-wise relationship are marked as solid curves, 
while the smooths of the fitted values are marked as dashed curves. The two curves in 
each plot match quite well thus providing further evidence that (7.5) is a valid model.    

 Below is the output from R associated with fitting model (7.5). 

  Regression output from R   

 Call:   
 lm(formula = lpsa ~ lcavol + lweight + age + lbph + svi + lcp + 
gleason + pgg45)   
 Coefficients:   

  Figure 7.5    Diagnostic plots from R for model (7.5)       
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  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 0.429170 1.553588 0.276 0.78334   
 lcavol 0.576543 0.107438 5.366 1.47e-06 ***   
 lweight 0.614020 0.223216 2.751 0.00792 **   
 age -0.019001 0.013612 -1.396 0.16806   
 lbph 0.144848 0.070457 2.056 0.04431 *   
 svi 0.737209 0.298555 2.469 0.01651 *   
 lcp -0.206324 0.110516 -1.867 0.06697 .   
 gleason -0.029503 0.201136 -0.147 0.88389   
 pgg45 0.009465 0.005447 1.738 0.08755 .   
 ---   

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1   
 Residual standard error: 0.7123 on 58 degrees of  freedom   
 Multiple R-Squared: 0.6944, Adjusted R-squared: 0.6522   

 F-statistic: 16.47 on 8 and 58 DF, p-value: 2.042e-12   

  Figure 7.6    Marginal model plots for model (7.5)       
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 Notice that the overall F-test for model (7.5) is highly statistically significant and 
four of the estimated regression coefficients are statistically significant (i.e., lcavol, 
lweight, lbph and svi). 

 Finally, we show in Figure  7.7  the added-variable plots associated with model 
(7.5). Case 45 appears to be highly influential in the added-variable plot for lweight, 
and, as such, it should be investigated. We shall return to this issue later. For now 
we shall continue under the assumption that (7.5) is a valid model.    

 The variance inflation factors for the training data set are as follows: 

  lcavol lweight age lbph svi lcp gleason  pgg45   
  2.318496 1.472295 1.356604 1.383429 2.045313 3.117451 2.644480 3.313288   

 None of these exceed 5 and so multicollinearity is not a serious issue. 
 We next consider variable selection in this example by identifying the subset of 

the predictors of a given size that maximizes adjusted R-squared (i.e., minimizes 
RSS). Figure  7.8  shows plots of adjusted R-squared against the number of predictors 
in the model for the optimal subsets of predictors. Table  7.2  gives the values of   R2

adj
  , 

AIC, AIC 
C
  and BIC for the best subset of each size. Highlighted in bold are the 

minimum values of AIC, AIC 
C
  and BIC along with the maximum value of   R2

adj
  .          

  Figure 7.7    Added-variable plots for model (7.5)       
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 Notice from Table  7.2  that AIC judges the predictor subset of size 7 to be “best” 
while AIC 

C
  judges the subset of size 4 to be “best”and BIC judge the subset of size 

2 to be “best.” While the maximum value of corresponds to the predictor subset of 
size 7, using the argument described earlier in this chapter, one could choose the 
subset of size 4 to be “best” in terms of  R2

adj
.  

 Given below is the output from R associated with fitting the best models with 
two-, four- and seven-predictor variables to the training data.  

  Figure 7.8    Plots of   R2
adj

   against subset size for the best subset of each size       
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 Table 7.2    Values of   R2
adj

  , AIC, AIC 
C
  and BIC for the best subset of each size  

 Subset 
size  Predictors R2

adj
 AIC  AIC

C
  BIC 

 1  lcavol  0.530  –23.374  –22.99  –18.96 
 2  lcavol, lweight  0.603  –33.617  –32.97   –27.00  
 3  lcavol, lweight, svi  0.620  –35.683  –34.70  –26.86 
 4  lcavol, lweight, svi, lbph  0.637  –37.825   –36.43   –26.80 
 5  lcavol, lweight, svi, lbph, pgg45  0.640  –37.365  –35.47  –24.14 
 6  lcavol, lweight, svi, lbph, pgg45, lcp  0.651  –38.64  –36.16  –23.21 
 7  lcavol, lweight, svi, lbph, pgg45, lcp, 

age 
  0.658    –39.10   –35.94  –21.47 

 8  lcavol, lweight, svi, lbph, pgg45, lcp, 
age, gleason 

 0.652  –37.13  –33.20  –17.29 
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  Regression output from R   

 Call:   
 lm(formula = lpsa ~ lcavol + lweight)   
 Coefficients:   

  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) -1.04944 0.72904 -1.439 0.154885   
 lcavol 0.62761 0.07906 7.938 4.14e-11 ***   
 lweight 0.73838 0.20613 3.582 0.000658 ***   
 ---  
 Residual standard error: 0.7613 on 64 degrees of freedom  
 Multiple R-Squared: 0.6148, Adjusted R-squared: 0.6027   
 F-statistic: 51.06 on 2 and 64 DF, p-value: 5.54e-14   

 Call:   
 lm(formula = lpsa ~ lcavol + lweight + svi + lbph)   

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   

 (Intercept) -0.32592 0.77998 -0.418 0.6775   
 lcavol 0.50552 0.09256 5.461 8.85e-07 ***   
 lweight 0.53883 0.22071 2.441 0.0175 *   
 svi 0.67185 0.27323 2.459 0.0167 *   
 lbph 0.14001 0.07041 1.988 0.0512 .   
 ---  
 Residual standard error: 0.7275 on 62 degrees of freedom  
 Multiple R-Squared: 0.6592, Adjusted R-squared: 0.6372   
 F-statistic: 29.98 on 4 and 62 DF, p-value: 6.911e-14   

 Call:   
 lm(formula = lpsa ~ lcavol + lweight + svi + lbph + pgg45 + lcp  + age)   

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 0.259062 1.025170 0.253 0.8014   
 lcavol 0.573930 0.105069 5.462 9.88e-07 ***   
 lweight 0.619209 0.218560 2.833 0.0063 **   
 svi 0.741781 0.294451 2.519 0.0145 *   
 lbph 0.144426 0.069812 2.069 0.0430 *   
 pgg45 0.008945 0.004099 2.182 0.0331 *   
 lcp -0.205417 0.109424 -1.877 0.0654 .   
 age -0.019480 0.013105 -1.486 0.1425   
 ---  
 Residual standard error: 0.7064 on 59 degrees of freedom  
 Multiple R-Squared: 0.6943, Adjusted R-squared: 0.658   
 F-statistic: 19.14 on 7 and 59 DF, p-value: 4.496e-13   

 Notice that both predictor variables are judged to be “statistically significant” in the two-
variable model, three variables are judged to be “statistically significant” in the 
four-variable model and five variables are judged to be “statistically significant” in 
the seven-variable model. However, the  p -values obtained after variable selection are 
much smaller than their true values. In view of this, it seems that the four- and seven-
variable models over-fit the data and as such  the two-variable model seems to be 

preferred.    
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  7.3.2 Stage 2: Model Comparison Using the Test Data Set 

 We can now use the test data to compare the two-, four- and seven-variable models 
we identified above. 

 Given below is the output from R associated with fitting the best models with 
two-, four and seven-predictor variables to the 30 cases in the test data. 

  Regression output from R   

 Call:   
 lm(formula = lpsa ~ lcavol + lweight)   

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 0.7354 0.9572 0.768 0.449   
 lcavol 0.7478 0.1294 5.778 3.81e-06 ***   
 lweight 0.1968 0.2473 0.796 0.433   
 ---   
 Residual standard error: 0.721 on 27 degrees of freedom   
 Multiple R-Squared: 0.5542, Adjusted R-squared: 0.5212   
 F-statistic: 16.78 on 2 and 27 DF, p-value: 1.833e-05   

 Call:   
 lm(formula = lpsa ~ lcavol + lweight + svi + lbph)   

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 0.52957 0.93066 0.569 0.5744   
 lcavol 0.59555 0.12655 4.706 7.98e-05 ***   
 lweight 0.26215 0.24492 1.070 0.2947   
 svi 0.95051 0.32214 2.951 0.0068 **   
 lbph -0.05337 0.09237 -0.578 0.5686   
 ---  
 Residual standard error: 0.6445 on 25 degrees of freedom  
 Multiple R-Squared: 0.6703, Adjusted R-squared: 0.6175   
 F-statistic: 12.7 on 4 and 25 DF, p-value: 8.894e-06   

 Call:   
 lm(formula = lpsa ~ lcavol + lweight + svi + lbph + pgg45 + lcp + age)   

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 0.873329 1.490194 0.586 0.56381   
 lcavol 0.481237 0.165881 2.901 0.00828 **   
 lweight 0.313601 0.257112 1.220 0.23549   
 svi 0.619278 0.423109 1.464 0.15744   
 lbph -0.090696 0.121368 -0.747 0.46281   
 pgg45 0.001316 0.006370 0.207 0.83819   
 lcp 0.180850 0.166970 1.083 0.29048   
 age -0.004958 0.022220 -0.223 0.82550   
 ---   
 Residual standard error: 0.6589 on 22 degrees of  freedom   
 Multiple R-Squared: 0.6967, Adjusted R-squared:  0.6001   
 F-statistic: 7.218 on 7 and 22 DF, p-value: 0.0001546   
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 Notice that in the test data just one-predictor variable is judged to be “statisti-
cally significant” in the two-variable model, two variables are judged to be “sta-
tistically significant” in the four-variable model and just one variable is judged to 
be “statistically significant” in the seven-variable model. Thus, based on the test 
data none of these models is very convincing.  

  7.3.2.1 What Has Happened? 

 Put briefly, this situation is due to

  •  Case 45 in the training set accounts for most of the statistical significance of the 
predictor variable lweight  

 •  Splitting the data into a training set and a test set by randomly assigning cases 
does not always work well in small data sets.    

 We discuss each of these issues in turn.  

  7.3.2.2 Case 45 in the Training Set 

 We reconsider variable selection in this example by identifying the subset of the 
predictors of a given size that maximizes adjusted R-squared (i.e., minimizes 
RSS) for the training data set with and without case 45. Figure  7.9  shows plots 
of adjusted R-squared (for models with up to 5 predictors) against the number 
of predictors in the model for the optimal subsets of predictors for the training 
data set with and without case 45. Notice how the optimal  two-, three- and five-
variable models change with the omission of just case 45. Thus, case 45 has a 
dramatic effect on variable selection. It goes without saying that case 45 in the 
training set should be thoroughly investigated.     

  7.3.2.3 Splitting the Data into a Training Set and a Test Set 

 Snee (1977, p. 421) demonstrated the advantages of splitting the data into a training 
set and a test set such that “the two sets cover approximately the same region and 
have the same statistical properties.” Random splits, especially in small samples do 
not always have these desirable properties. In addition, Snee (1977) described the 
DUPLEX algorithm for data splitting which has the desired properties. For details 
on the algorithm see Montgomery, Peck and Vining (2001, pp. 536–537). 

 Figure  7.10  provides an illustration of the difference between the training and 
test data sets. It shows a scatter plot of lpsa against lweight with different symbols 
used for the training and test data sets. The least squares regression line for each 
data set is also marked on Figure  7.10 . While case 45 in the training data set does 
not stand out in Figure  7.10 , case 9 in the test data set stands out due to its very high 
value of lweight.    
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  Figure 7.9    Plots of   R2
adj

   for the best subset of sizes 1 to 5 with and without case 45       
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  Figure 7.10    Plot of lpsa against lweight for both the training and test data sets       
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  Figure 7.11    Added-variable plot for the predictor lweight for the test data       
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 To further illustrate the dramatic effect due to case 9 in the test data set, Figure 
 7.11  shows an added-variable plot for the predictor lweight based on the full model 
for the test data.    

 In summary, case 45 in the training data and case 9 in the test data need to be 
thoroughly investigated before any further statistical analyses are performed. This 
example once again illustrates the importance of carefully examining any regres-
sion fit in order to determine outliers and influential points. If cases 9 and 45 are 
found to be valid data points and not associated with special cases, then a possible 
way forward is to use variable selection techniques based on robust regression – see 
Maronna, Martin and Yohai (2006, Chapter 5) for further details.    

  7.4 Recent Developments in Variable Selection – LASSO  

 In this section we briefly discuss LASSO, least absolute shrinkage and selection 
operator (Tibshirani, 1996), which we shall discover is a method that effectively 
performs variable selection and regression coefficient estimation simultaneously. 
There has been much interest in LASSO as evidenced by the fact that according to 
the Web of Science, Tibshirani’s 1996 LASSO paper has been cited more than 400 
times as of June, 2008. 
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 The LASSO estimates of the regression coefficients from the full model (7.1) are 
obtained from the following constrained version of least squares: 

 { }( )b b b b
= =

− + +…+ ≤∑ ∑
2

0 1 1
1 1

min subject to
pn

i i p pi j

i j

y x x s    (7.6)     

for some number   s ³ 0  . Using a Lagrange multiplier argument, it can be shown that 
(7.6) is equivalent to minimizing the residual sum of squares plus a penalty term on 
the absolute value of the regression coefficients, that is,
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 for some number   l ³ 0  . When the value of  s  in (7.6) is very large (or equivalently 
in   l = 0   (7.7)), the constraint in (7.6) (or equivalently the penalty term in (7.7)) has 
no effect and the solution is just the set of least squares estimates for model (7.1). 
Alternatively, for small values of  s  (or equivalently large values of   l  ) some of the 
resulting estimated regression coefficients are exactly zero, effectively omitting 
predictor variables from the fitted model. Thus, LASSO performs variable selection 
and regression coefficient estimation simultaneously. 

 Zhou, Hastie and Tibshirani (2007) develop versions of AIC and BIC for 
LASSO that can be used to find an “optimal” value or   l   or equivalently  s . They 
suggest using BIC to find the “optimal” LASSO model when sparsity of the model 
is of primary concern. 

 LARS, least angle regression (Efron et al., 2004) provides a clever and hence 
very efficient way of computing the complete Lasso sequence of solutions as  s  is 
varied from 0 to infinity. In fact, Zhou, Hastie and Tibshirani (2007) show that it is 
possible to find the optimal lasso fit with the computational effort equivalent to 
obtaining a single least squares fit. Thus, the LASSO has the potential to revolu-
tionize variable selection. A more detailed discussion of LASSO is beyond the 
scope of this book. 

 Finally, Figure  7.12  contains a flow chart which summarizes the steps in devel-
oping a multiple linear regression model.     
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  Figure 7.12    Flow chart for multiple linear regression       
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  7.5 Exercises  

    1.    The generated data set in this question is taken from Mantel (1970). The data are 
given in Table  7.3 and can be found on the book web site in the file Mantel.txt .            
 Interest centers on using variable selection to choose a subset of the predictors 
to model  Y . The data were generated such that the full model 

 0 1 1 2 2 3 3Y X X X eb b b b= + + + +    (7.8)     

 is a valid model for the data. 

 Output from R associated with different variable selection procedures based on 
model (7.8) appears below.
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  (a)   Identify the optimal model or models based on   R2
adj

  , AIC and BIC from the 
approach based on all possible subsets.  

 (b)   Identify the optimal model or models based on AIC and BIC from the 
approach based on forward selection.  

 (c)  Carefully explain why different models are chosen in (a) and (b).  
 (d)   Decide which model you would recommend. Give detailed reasons to sup-

port your choice.    

  Output from R: Correlations between the predictors in model (7.8)  

  X1 X2 X3   
 X1 1.0000000 -0.9999887 0.6858141   
 X2 -0.9999887 1.0000000 -0.6826107   
 X3 0.6858141 -0.6826107 1.0000000   

  Approach 1: All Possible Subsets 

 Figure  7.13  shows a plot of adjusted R-squared against the number of predictors in 
the model for the optimal subsets of predictors.    
 Table  7.4  gives the values of   R2

adj
  , AIC and BIC for the best subset of each size.        

  Approach 2: Stepwise Subsets 

  Forward Selection Based on AIC   

 Start: AIC= 9.59   
 Y ~ 1   
  Df Sum of Sq RSS AIC   
 + X3 1 20.6879 2.1121 -0.3087   
 + X1 1 8.6112 14.1888 9.2151   
 + X2 1 8.5064 14.2936 9.2519   
 <none>   22.8000 9.5866   
 Step: AIC= -0.31   
 Y ~ X3   
   Df Sum of Sq RSS AIC   
 <none>   2.11211 -0.30875   
 + X2 1  0.06633  2.04578  1.53172   
 + X1  1  0.06452  2.04759  1.53613    

 Table 7.3    Mantel’s generated data  

 Case  Y  X1  X2  X3 

 1  5  1  1004  6 
 2  6  200  806  7.3 
 3  8  –50  1058  11 
 4  9  909  100  13 
 5  11  506  505  13.1 
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  Forward Selection Based on BIC*   

 Start: AIC= 9.2   
 Y ~ 1   
  Df Sum of Sq  RSS  AIC   
 + X3  1  20.6879  2.1121  -1.0899   
 + X1  1  8.6112  14.1888  8.4339   
 + X2  1  8.5064  14.2936  8.4707   
 <none>    22.8000  9.1961   
 Step: AIC= -1.09   
 Y ~ X3   
  Df Sum of Sq  RSS  AIC   
 <none>    2.11211  -1.08987   
 + X2  1  0.06633  2.04578  0.36003   
 + X1  1  0.06452  2.04759  0.36444    

 Table 7.4    Values of   R2
adj  , AIC and BIC for the best subset of each size  

 Subset size  Predictors R2
adj  AIC  BIC 

 1  X3  0.8765  –0.3087  –1.0899 
 2  X1, X2  1.0000  –316.2008  –317.3725 
 3  X1, X2, X3  1.0000  –314.7671  –316.3294 
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  Figure 7.13    Plots of   R2
adj

   for the best subset of each size       

 * The R command step which was used here labels the output as AIC even when the BIC penalty 
term is used. 
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  Output from R   

 Call:   
 lm(formula = Y ~ X3)   

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 0.7975 1.3452 0.593 0.5950   
 X3 0.6947 0.1282 5.421 0.0123 *   
 ---  

 Residual standard error: 0.8391 on 3 degrees of freedom  
 Multiple R-Squared: 0.9074, Adjusted R-squared: 0.8765   
 F-statistic: 29.38 on 1 and 3 DF, p-value: 0.01232   

 Call:   
 lm(formula = Y ~ X1 + X2)   

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) -1.000e+03 4.294e-12 -2.329e+14 <2e-16 ***   
 X1 1.000e+00 4.250e-15 2.353e+14 <2e-16 ***   
 X2 1.000e+00 4.266e-15 2.344e+14 <2e-16 ***   
 ---  
 Residual standard error: 1.607e-14 on 2 degrees of freedom  
 Multiple R-Squared: 1, Adjusted R-squared: 1   
 F-statistic: 4.415e+28 on 2 and 2 DF, p-value: < 2.2e-16   

 Call:   
 lm(formula = Y ~ X1 + X2 + X3)   

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) -1.000e+03 1.501e-11 -6.660e+13 9.56e-15 ***   
 X1 1.000e+00 1.501e-14 6.661e+13 9.56e-15 ***   
 X2 1.000e+00 1.501e-14 6.664e+13 9.55e-15 ***   
 X3 4.108e-15 1.186e-14 3.460e-01 0.788   
 ---  
 Residual standard error: 2.147e-14 on 1 degrees of freedom  
 Multiple R-Squared: 1,  Adjusted R-squared: 1   
 F-statistic: 1.648e+28 on 3 and 1 DF, p-value: 5.726e-15   

2.   The real data set in this question first appeared in Hald (1952). The data are 
given in Table  7.5 and can be found on the book web site in the file Haldcement.
txt .         Interest centers on using variable selection to choose a subset of the predic-
tors to model  Y . Throughout this question we shall assume that the full model 
below is a valid model for the data 

 0 1 1 2 2 3 3 4 4Y X X X X eb b b b b= + + + + +    (7.9)     

 Output from R associated with different variable selection procedures based on 
model (7.9) appears on the following pages:
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   (a)     Identify the optimal model or models based on   R2
adj

  , AIC, AIC
C
, BIC from 

the approach based on all possible subsets.  
   (b)     Identify the optimal model or models based on AIC and BIC from the 

approach based on forward selection.  
   (c)     Identify the optimal model or models based on AIC and BIC from 

the approach based on backward elimination.  
   (d)     Carefully explain why the models chosen in (a), (b) & (c) are not all the 

same.  
   (e)     Recommend a final model. Give detailed reasons to support your choice.      

  Output from R: Correlations between the predictors in model (7.9)   

   x1 x2 x3 x4   
 x1 1.0000000  0.2285795 -0.82413376 -0.24544511   
 x2 0.2285795  1.0000000 -0.13924238 -0.97295500   
 x3 -0.8241338 -0.1392424  1.00000000  0.02953700   
 x4 -0.2454451 -0.9729550  0.02953700  1.00000000   

  Approach 1: All Possible Subsets  

 Figure  7.14  shows a plot of adjusted R-squared against the number of predictors in 
the model for the optimal subsets of predictors.      Table  7.6  shows the best subset of 
each size.       

 Table 7.5     Hald’s real data  

 Y  x 
1
   x 

2
   x 

3
   x 

4
  

 78.5  7  26  6  60 
 74.3  1  29  15  52 
 104.3  11  56  8  20 
 87.6  11  31  8  47 
 95.9  7  52  6  33 
 109.2  11  55  9  22 
 102.7  3  71  17  6 
 72.5  1  31  22  44 
 93.1  2  54  18  22 
 115.9  21  47  4  26 
 83.8  1  40  23  34 
 113.3  11  66  9  12 
 109.4  10  68  8  12 
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  Approach 2: Stepwise Subsets   

  Backward elimination based on AIC   

 Start: AIC= 26.94   
 Y ~ x1 + x2 + x3 + x4   
  DF Sum of Sq RSS AIC   
 - x3 1 0.109 47.973 24.974   
 - x4 1 0.247 48.111 25.011   
 - x2 1 2.972 50.836 25.728   
 <none>   47.864 26.944   
 - x1 1 25.951 73.815 30.576   

 Step: AIC= 24.97   
 Y ~ x1 + x2 + x4   
  Df Sum of Sq RSS AIC   
 <none>   47.97 24.97   
 - x4 1 9.93 57.90 25.42   
 - x2 1 26.79 74.76 28.74   
 - x1 1 820.91 868.88 60.63    

  Figure 7.14    Plots of   2

adjR    for the best subset of each size       
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 Table 7.6    Values of   R2
adj

   , AIC, AIC 
C
  and BIC for the best subset of each size  

 Subset 
size  Predictors R2

adj
 AIC  AIC 

C
   BIC 

 1  X4  0.6450  58.8516  61.5183  59.9815 

 2  X1, X2  0.9744  25.4200  30.4200  27.1148 
 3  X1, X2, X4  0.9764  24.9739  33.5453  27.2337 
 4  X1, X2, X3, X4  0.9736  26.9443  40.9443  29.7690 
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  Backward elimination based on BIC   

 Start: AIC= 29.77   
 Y ~ x1 + x2 + x3 + x4   
  Df Sum of Sq RSS AIC   
 - x3 1 0.109 47.973 27.234   
 - x4 1 0.247 48.111 27.271   
 - x2 1 2.972 50.836 27.987   
 <none>   47.864 29.769   
 - x1 1 25.951 73.815 32.836   

 Step: AIC= 27.23   
 Y ~ x1 + x2 + x4   
  Df Sum of Sq RSS AIC   
 - x4 1 9.93 57.90 27.11   
 <none>   47.97 27.23   
 - x2 1 26.79 74.76 30.44   
 - x1 1 820.91 868.88 62.32   

 Step: AIC= 27.11   
 Y ~ x1 + x2   
  Df Sum of Sq RSS AIC   
 <none>   57.90 27.11   
 - x1 1 848.43 906.34 60.31   
 - x2 1 1207.78 1265.69 64.65    

  Forward selection based on AIC   

 Start: AIC= 71.44   
 Y ~ 1   
  Df Sum of Sq RSS AIC   
 + x4 1 1831.90 883.87 58.85   
 + x2 1 1809.43 906.34 59.18   
 + x1 1 1450.08 1265.69 63.52   
 + x3 1 776.36 1939.40 69.07   
 <none>   2715.76 71.44   

 Step: AIC= 58.85   
 Y ~ x4   
  Df Sum of Sq RSS AIC   
 + x1 1 809.10 74.76 28.74   
 + x3 1 708.13 175.74 39.85   
 <none>   883.87 58.85   
 + x2 1 14.99 868.88 60.63   

 Step: AIC= 28.74   
 Y ~ x4 + x1   
  Df Sum of Sq RSS AIC   
 + x2 1 26.789 47.973 24.974   
 + x3 1 23.926 50.836 25.728   
 <none>   74.762 28.742   
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 Step: AIC= 24.97   
 Y ~ x4 + x1 + x2   
  Df Sum of Sq RSS AIC   
 <none>   47.973 24.974   
 + x3 1 0.109 47.864 26.944    

  Forward selection based on BIC   

 Start: AIC= 72.01   
 Y ~ 1   
  Df Sum of Sq RSS AIC   
 + x4 1 1831.90 883.87 59.98   
 + x2 1 1809.43 906.34 60.31   
 + x1 1 1450.08 1265.69 64.65   
 + x3 1 776.36 1939.40 70.20   
 <none>   2715.76 72.01   

 Step: AIC= 59.98   
 Y ~ x4   
  Df Sum of Sq RSS AIC   
 + x1 1 809.10 74.76 30.44   
 + x3 1 708.13 175.74 41.55   
 <none>   883.87 59.98   
 + x2 1 14.99 868.88 62.32   

 Step: AIC= 30.44   
 Y ~ x4 + x1   
  Df Sum of Sq RSS AIC   
 + x2 1 26.789 47.973 27.234   
 + x3 1 23.926 50.836 27.987   
 <none>   74.762 30.437   

 Step: AIC= 27.23   
 Y ~ x4 + x1 + x2   
  Df Sum of Sq RSS AIC   
 <none>   47.973 27.234   
 + x3 1 0.109 47.864 29.769    

  Output from R   

 Call:   
 lm(formula = Y ~ x4)   

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 117.5679 5.2622 22.342  1.62e-10 ***   
 x4  -0.7382 0.1546 -4.775 0.000576 ***   
 ---   
 Residual standard error: 8.964 on 11 degrees of freedom   
 Multiple R-Squared: 0.6745, Adjusted R-squared: 0.645   
 F-statistic: 22.8 on 1 and 11 DF, p-value: 0.0005762   
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 Call:   
 lm(formula = Y ~ x1 + x2)   

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 52.57735 2.28617 23.00 5.46e-10 ***   
 x1 1.46831 0.12130 12.11 2.69e-07 ***   
 x2 0.66225 0.04585 14.44 5.03e-08 ***   
 ---   
 Residual standard error: 2.406 on 10 degrees of freedom   
 Multiple R-Squared: 0.9787, Adjusted R-squared: 0.9744   
 F-statistic: 229.5 on 2 and 10 DF, p-value: 4.407e-09   

 vif(om2)   
  x1 x2   
  1.055129 1.055129   

 Call:   
 lm(formula = Y ~ x1 + x2 + x4)   

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 71.6483 14.1424 5.066 0.000675 ***   
 x1 1.4519 0.1170 12.410 5.78e-07 ***   
 x2 0.4161 0.1856 2.242 0.051687 .   
 x4 -0.2365 0.1733 -1.365 0.205395   
 ---   
 Residual standard error: 2.309 on 9 degrees of freedom   
 Multiple R-Squared: 0.9823, Adjusted R-squared: 0.9764   
 F-statistic: 166.8 on 3 and 9 DF, p-value: 3.323e-08   

 vif(om3)   
  x1 x2 x4   
  1.066330 18.780309 18.940077    

    Call:   
 lm(formula = Y ~ x1 + x2 + x3 + x4)   
 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 62.4054 70.0710 0.891 0.3991   
 x1 1.5511 0.7448 2.083 0.0708 .   
 x2 0.5102 0.7238 0.705 0.5009   
 x3 0.1019 0.7547 0.135 0.8959   
 x4 -0.1441 0.7091 -0.203 0.8441   
 ---   

 Residual standard error: 2.446 on 8 degrees of freedom   
 Multiple R-Squared: 0.9824, Adjusted R-squared: 0.9736   
 F-statistic: 111.5 on 4 and 8 DF, p-value: 4.756e-07   

 vif(om4)   
  x1 x2 x3 x4   
  38.49621 254.42317 46.86839 282.51286  
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   3.    This is a continuation of Exercise 5 in Chapter 6. The golf fan was so impressed 
with your answers to part 1 that your advice has been sought re the next stage in 
the data analysis, namely using model selection to remove the redundancy in full 
the model developed in part 1.

 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7log( )Y x x x x x x x eb b b b b b b b= + + + + + + + +    (7.10)         

 where 
  Y = PrizeMoney ;  x  

1
  = Driving Accuracy ;  x  

2
  = GIR ;  x  

3
  = PuttingAverage ;  x  

4
  = 

BirdieConversion ;  x  
5
  = SandSaves ; x 

 6 
  = Scrambling ; and  x  

7
  = PuttsPerRound.  

 Interest centers on using variable selection to choose a subset of the predic-
tors to model the transformed version of  Y . Throughout this question we shall 
assume that model (7.10) is a valid model for the data.

   (a)    Identify the optimal model or models based on   2

adj
R   , AIC, AIC

C
, BIC from 

the approach based on all possible subsets.  
   (b)    Identify the optimal model or models based on AIC and BIC from the 

approach based on backward selection.  
   (c)    Identify the optimal model or models based on AIC and BIC from the 

approach based on forward selection.  
   (d)    Carefully explain why the models chosen in (a) & (c) are not the same while 

those in (a) and (b) are the same.  
   (e)    Recommend a final model. Give detailed reasons to support your choice.  
   (f)    Interpret the regression coefficients in the final model. Is it necessary to be 

cautious about taking these results to literally?              



   Chapter 8   

  Logistic Regression         

 Thus far in this book we have been concerned with developing models where the 
response variable is numeric and ideally follows a normal distribution. In this chapter, 
we consider the situation in which the response variable is based on a series of 
“yes”/“no” responses, such as whether a particular restaurant is recommended by 
being included in a prestigious guide. Ideally such responses follow a binomial 
distribution in which case the appropriate model is a logistic regression model. 

  8.1 Logistic Regression Based on a Single Predictor  

 We begin this chapter by considering the case of predicting a binomial random vari-
able  Y  based on a single predictor variable  x  via logistic regression. Before consid-
ering logistic regression we briefly review some facts about the binomial 
distribution. 

  The binomial distribution  

 A binomial process is one that possesses the following properties:

    1.    There are  m  identical trials  
    2.    Each trial results in one of two outcomes, either a “success,”  S  or a “failure,”  F   
    3.      θ  , the probability of “success” is the same for all trials  
    4.    Trials are independent     

 The trials of a binomial process are called Bernoulli trials. 
 Let  Y  = number of successes in  m  trials of a binomial process. Then  Y  is said to 

have a binomial distribution with parameters  m    and q  . The short-hand notation for 
this is as follows:  

  Y~Bin(m, q)   

The  probability that  Y  takes the integer value  j  ( j  = 0, 1, …,  m ) is given by  

 ( ) ( ) ( )!
( ) 1 1 1,...,

!( )!
 q q q q

− −= = − = − =
−

j

m m j m jj jm
P Y j j m

j m j
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 The mean and variance of  Y  are given by  

 ( ) , ( ) (1 )E Y m Var Y m= = −q q q       

 In the logistic regression setting, we wish to model   q   and hence  Y  on the basis of 
predictors  x  

1
 ,  x  

2
 , …,  x  

p
 . 

 We shall begin by considering the case of a single predictor variable  x . In 
this case  

 ( )| Bin( , ( )) 1,...,~ =i i iY x m x i nq       

 The sample proportion of “successes” at each  i  is given by
 
   y

i
 / m

i
.   Notice that  

 E(y
i  
/ m

i
|x

i
) = q(x

i
) and Var(y

i 
/ m

i 
| x

i
) = q (x

i
) (1– q (x

i 
)) / m

i
      

 We shall consider the sample proportion of “successes,” y
i
 / m

i
     as the response since:

   1.      y
i 
/m

i
   is an unbiased estimate of   q (x

i
)    

   2.      y
i 
/m

i
   varies between 0 and 1     

 Notice that the variance of the response   y
i 
/ m

i
  , depends on   q (x

i
)   and as such it is not 

constant. In addition, this variance is also therefore unknown. Thus, least squares 
regression is an inappropriate technique for analyzing Binomial responses. 

  Example: Michelin and Zagat guides to New York City restaurants  

 In November 2005, Michelin published its first ever guide to hotels and restaurants 
in New York City (Anonymous, 2005). According to the guide, inclusion in the 
guide is based on Michelin’s “meticulous and highly confidential evaluation process 
(in which) Michelin inspectors – American and European – conducted anonymous 
visits to New York City restaurants and hotels. … Inside the premier edition of the 
 Michelin Guide New York City  you’ll find a selection of restaurants by level of 
comfort; those with the best cuisine have been awarded our renowned Michelin 
stars. … From the best casual, neighborhood eateries to the city’s most impressive 
gourmet restaurants, the  Michelin Guide New York City  provides trusted advice for 
an unbeatable experience, every time.” 

 On the other hand, the  Zagat Survey 2006: New York City Restaurants  (Gathje 
and Diuguid, 2005) is purely based on views submitted by customers using mail-in 
or online surveys. 

 We shall restrict our comparison of the two restaurant guides to the 164 French 
restaurants that are included in the  Zagat Survey 2006: New York City Restaurants . 
We want to be able to model   q  , the probability that a French restaurant is included 
in the  2006 Michelin Guide New York City , based on customer views from the 
 Zagat Survey 2006: New York City Restaurants . We begin looking at the effect of 
 x , customer ratings of food on   q  . Table  8.1  classifies the 164 French restaurants 
included in the  Zagat Survey 2006: New York City Restaurants  according to 
whether they were included in the  Michelin Guide New York City  for each value of 
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the food rating. For example,  m  
 i 
  = 33 French restaurants in the  Zagat Survey 2006: 

New York City Restaurants  received a food rating of  x  
 i 
  = 20 (out of 30). Of these 

33,  y  
 i 
  = 8 were included in the  Michelin Guide New York City  and  m  

 i 
 –  y  

 i 
  = 25 were 

not. In this case, the observed proportion of “successes” at  x  = 20 is given by 

  8 0.24
33

i

i

y
m

= =   . The data in Table  8.1  can be found on the book web site in the file  

 MichelinFood.txt. Figure  8.1  contains a plot of the sample proportions of “success” 
against Zagat food ratings.  

 It is clear from Figure  8.1  that the shape of the underlying function,   q (x)   is not a 
straight line. Instead it appears S-shaped, with very low values of the  x -variable resulting 
in zero probability of “success” and very high values of the  x -variable resulting in a prob-
ability of “success” equal to one. 

  8.1.1 The Logistic Function and Odds 

 A popular choice for the S-shaped function evident in Figure  8.1  is the logistic 
function, that is, 

 { }
0 1

0 1 0 1

exp( ) 1
( )

1 exp( ) 1 exp( )
x

b b
q

b b b b

+
= =

+ + + − +
x

x x
       

 Solving this last equation for   b 
0
 + b

1
x  gives 

  Table 8.1    French restaurants in the Michelin guide broken down by food 
ratings    

 Food rating,  x  
 i   

 InMichelin,  y  
 i   

 NotInMichelin, 
 m  

 i  
- y

   i   
  m

   i   
  y  

 i  
/ m

   i   

 15  0  1  1  0.00 

 16  0  1  1  0.00 

 17  0  8  8  0.00 

 18  2  13  15  0.13 

 19  5  13  18  0.28 

 20  8  25  33  0.24 

 21  15  11  26  0.58 

 22  4  8  12  0.33 

 23  12  6  18  0.67 

 24  6  1  7  0.86 

 25  11  1  12  0.92 

 26  1  1  2  0.50 

 27  6  1  7  0.86 

 28  4  0  4  1.00 
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 0 1

( )
log

1 ( )

q
b b

q

⎛ ⎞
+ = ⎜ ⎟⎝ − ⎠

x
x

x        

 Thus, if the chosen function is correct, a plot of   
( )

log
1 ( )

q

q

⎛ ⎞
⎜ ⎟⎝ − ⎠

x

x
   against  x  will 

produce a straight line. The quantity log   
( )

1 ( )

q

q

⎛ ⎞
⎜ ⎟⎝ − ⎠

x

x
   is called a  logit . 

 The quantity   
( )

1 ( )

x

x−
q

q
   is known as  odds . The concept of odds has two forms, 

namely, the  odds in favor  of “success” and the  odds against  “success.” The odds in 
favor of “success” are defined as the ratio of the probability that “success” will 
occur, to the probability that “success” will not occur. In symbols, let   q = P(success)   
then, 

 
(success)

Odds in favor of success .
1 (success) 1

q

q
= =

− −
P

P
       

 Thus,  the odds in logistic regression are in the form of odds in favor of a 

“success.”  
 The odds against “success” are defined as the ratio of the probability that 

“success” will not occur, to the probability that “success” will occur. In symbols, 

 
1 (success) 1

Odds against success
(success)

q

q

− −
= =

P

P
.       

  Figure 8.1    Plot of the sample proportion of “successes” against food ratings       
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 Bookmakers quote odds as odds against “success” (i.e., winning). A horse quoted 
at the fixed odds of 20 to 1 (often written as the ratio 20/1) is expected to lose 20 
and win just 1 out of every 21 races. 

 Let  x  denote the Zagat food rating for a given French restaurant and q (x)     denote 
the probability that this restaurant is included in the Michelin guide. Then our 
logistic regression model for the response,   q (x)   based on the predictor variable  x  is 
given by 

 { }0 1

1
( )

1 exp( )
q

b b
=

+ − +
x

x
    (8.1)     

 Given below is the output from R for model (8.1). 

  Logistic regression output from R  

 Call:   
 glm(formula = cbind(InMichelin, NotInMichelin) ~ Food, family = 
binomial)   
 Coefficients:   
  Estimate Std. Error z value Pr(>|z|)   
 (Intercept) -10.84154 1.86236 -5.821 5.84e-09 ***   
 Food 0.50124 0.08768 5.717 1.08e-08 ***   
 ---  
 (Dispersion parameter for binomial family taken to be 1)

   Null deviance: 61.427 on 13 degrees of freedom    
 Residual deviance: 11.368 on 12 degrees of freedom     
AIC: 41.491   

 The fitted model is 

 { } { }
0 1

1 1
ˆ( )

ˆ ˆ 1 exp( 10.842+0.501 )1 exp( )

q
b b

= =
+ − −+ − +

x
xx

       

 Figure  8.2  shows a plot of the of the sample proportions of “success” (i.e., inclusion 
in the Michelin guide) against  x , Zagat food rating. The fitted logistic regression 
model is marked on this plot as a smooth curve.  

 Rearranging the fitted model equation gives the log(odds) or logit 

 
0 1

ˆ( ) ˆ ˆlog 10.842+0.501
ˆ1 ( )

q
b b

q

⎛ ⎞
= + = −⎜ ⎟−⎝ ⎠

x
x x

x
       

 Notice that the log(odds) or logit is a linear function of  x . The estimated odds for 
being included in the Michelin guide are given by 

 0 1

ˆ( ) ˆ ˆexp( ) exp( 10.842+0.501 )
ˆ1 ( )

q
b b

q

⎛ ⎞
= + = −⎜ ⎟−⎝ ⎠

x
x x

x
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 For example, if  x , Zagat food rating is increased by 

  •  One unit then the odds for being included in the Michelin guide increases by 
  exp(0.501) = 1.7    

 •  Five units then the odds for being included in the Michelin guide increases by 
exp (5 × 0.501) = 12.2        

 Table  8.2  gives the estimated probabilities and odds obtained from the logistic 
model (8.1). Taking the ratio of successive entries in the last column of Table  8.2  
(i.e., 0.060/0.036 = 0.098/0.060 = … = 24.364/14.759 = 1.7) reproduces the result 
that increasing  x  (Zagat food rating) by one unit increases the odds of being 
included in the Michelin guide by 1.7.  

 Notice from Table  8.2  that the odds are greater than 1 when the probability is 
greater than 0.5. In these circumstances the probability of “success” is greater than 
the probability of “failure.”  

  8.1.2 Likelihood for Logistic Regression with a Single Predictor 

 We next look at how likelihood can be used to estimate the parameters in logistic 
regression. 

  Figure 8.2    Logistic regression fit to the data in Fig        ure 8.1
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 Let  y  
 i 
 = number of successes in  m  

 i 
  trials of a binomial process where  i  = 1,…,  n . 

Then  

|  Bin( , ( ))
i i i i

y x m x~ q  

 So that 
 

( ) ( )q q
−

= = −( | ) ( ) 1 ( ) i ii i

i

m ym y
yi i i i i

P Y y x x x
  

Assume further that 
 

{ }0 1

1
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i

x
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q
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So that  
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log
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x
x

x

q
b b
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⎛ ⎞
= +⎜ ⎟−⎝ ⎠

  
Assuming the  n  observations are independent, then the likelihood function is the 
function of the unknown probability of success q (x

i
) given by  

( ) ( ) ( )qR q
=

−

=

−= = | =∏ ∏
1 1

( 1 ( ))i

i

i ii

n n
m

yi i

m yy

ii i

i i

L Y y x x x

  Table 8.2    Estimated probabilities and odds obtained from the logistic model    

  x , Zagat food rating 

   q̂ (x)  , estimated probability 
of inclusion in the 
Michelin guide 

    q̂ (x) / (1–q̂ (x))  estimated 
odds 

 15  0.035  0.036 

 16  0.056  0.060 

 17  0.089  0.098 

 18  0.14 0  0.162 

 19  0.211  0.268 

 20  0.306  0.442 

 21  0.422  0.729 

 22  0.546  1.204 

 23  0.665  1.988 

 24  0.766  3.281 

 25  0.844  5.416 

 26  0.899  8.941 

 27  0.937  14.759 

 28  0.961  24.364 
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  The log-likelihood function is given by 
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The parameters b
0 
and b

1 
can be estimated by maximizing the log-likelihood. This 

has to be done using an iterative method such as Newton-Raphson or iteratively 
reweighted least squares. 

 The standard approach to testing 

H
0
 : b

1 
= 0

 is to use what is called a Wald test statistic 
 

( )
1

1

ˆ

ˆestimated se
Z

b

b
=

     

 where the estimated standard error is calculated based on the iteratively 
reweighted least squares approximation to the maximum likelihood estimate. 
The Wald test statistic is then compared to a standard normal distribution to 
test for statistical significance. Confidence intervals based on the Wald statistic 
are of the form 

 

  ( )1 1 /2 1
ˆ ˆestimated sez ab b−±     



  8.1.3 Explanation of Deviance 

 In logistic regression the concept of the residual sum of squares is replaced by a 
concept known as the  deviance . In the case of logistic regression the deviance is 
defined to be 
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y m xq=    

 The degrees of freedom (df) associated with the deviance are given by 
 

  df = n – (number of b ′s estimated)   

 The deviance associated with a given logistic regression model (M) is based on 
comparing the maximized log-likelihood under (M) with the maximized log-likeli-
hood under (S), the so-called saturated model that has a parameter for each observa-
tion. In fact, the deviance is given by twice the difference between these maximized 
log-likelihoods. 

 The saturated model, (S) estimates q (x
i 
) by the observed proportion of “succ-

esses” at  x  
 i 
 , i.e., by 

i i
y m . In symbols, S

ˆ ( )
i i i

x y mq = . In the current example, these 
estimates can be found in Table 8.1. Let 

M
ˆ ( )

i
xq  denote the estimate of  q  (x

i
) 

obtained from the logistic regression model. In the current example, these estimates 
can be found in Table  8.2 . Let ŷ

1
 denote the predicted value of y

i
 obtained from the 

logistic regression model then ˆˆ ( )
i i i

y m xqΜ=  or    
  
         M

ˆˆ ( ) i

i

i

y
x

m
q =    .

 Recall that the log-likelihood function is given by 

( ) ( ) ( ) ( ) ( )q q
=

⎡ ⎤= + − − +⎣ ⎦∑
1

log log ( ) log 1 ( ) log i

i

n
m

i i i i i y

i

L y x m y x
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 Thus, the deviance is given by 
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∑

∑

   

 When each  m  
 i 
 , the number of trials at  x  

 i 
 , is  large enough  the deviance can be used 

to as a goodness-of-fit test for the logistic regression model as we explain next. 
 We wish to test

    H  
 0 
 : logistic regression model (8.1) is appropriate    

 against
    H  

 A 
 : logistic model is inappropriate so a saturated model is needed    

 Under the null hypothesis and when each  m  
 i 
  is  large enough , the deviance  G  2  is 

approximately distributed as   2
1n p

c − −   , where  n  = the number of binomial samples, 

 p  = the of predictors in the model (i.e.,  p  + 1 = number of parameters estimated). 

In this case,  n  = 14,  p  = 1, and so we have 12 df. In R, the deviance associated with 
model (8.1) is referred to as the Residual deviance while the null deviance is 
based on model (8.1) with b

1
     set to zero. 

  Logistic regression output from R  

     Null deviance: 61.427 on 13 degrees of freedom   
 Residual deviance: 11.368 on 12 degrees of freedom   

 So that the  p -value is  

  P(G2 > 11.368) = 0.498   

 Thus, we are unable to reject  H  
0
 . In other words, the deviance goodness-of-fit test 

finds that the logistic regression model (8.1) is an adequate fit overall for the 
Michelin guide data.  

  8.1.4 Using Differences in Deviance Values to Compare Models 

 The difference in deviance can be used to compare nested models. For example, we 
can compare the null and residual deviances to test  



  

= =
+ −0 1

0

1
: ( ) (i.e., 0)

1 exp( )
H xq b

b
   

 against 
 

  
{ } 1

0 1

1
: ( ) (i.e., 0)

1 exp( )
A

H x
x

q b
b b

= ≠
+ − +

   

 The difference in these two deviances is given by 
 

  0

2 2 = 61.427 11.368 50.059
AH H

G G -− =
   

 This difference is to be compared to   c 2   a distribution with   
0

df df 13 12 1
AH H

− = − =    
degree of freedom. The resulting  p -value is given by 
 

  0

2 2( 50.059) 1.49e-12
AH H

P G G− > =
   

 Earlier, we found that the corresponding  p -value based on the Wald test equals 
1.08e-08. We shall see that Wald tests and tests based on the difference in deviances 
can result in quite different  p -values.  

  8.1.5 R 2  for Logistic Regression 

 Recall that for linear regression 
 

  

2 RSS
1 .

SST
R = −

   

 Since the deviance,   ( ) ( )2
S M2 log logG L L⎡ ⎤= −⎣ ⎦    in logistic regression is a generali-

zation of the residual sum of squares in linear regression, one version of  R  2  for 
logistic regression model is given by 

 

  0

2

2
dev 2

1 AH

H

G
R

G
= −

   

 For the single predictor logistic regression model (8.1) for the Michelin guide data, 

  2
dev

11.368
1 0.815

61.427
R = − =   . 

 There are other ways to define  R  2  for logistic regression. Menard (2000) provides 
a review and critique of these, and ultimately recommends   2

devR   . 
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  Pearson goodness-of-fit statistic  

 An alternative measure of the goodness-of-fit of a logistic regression model is the 
Pearson  X  2  statistic which is given by 
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y m x y m x

y m x x m
X

   

 The degrees of freedom associated with this statistic are the same as those associ-
ated with the deviance, namely, 

Degrees of freedom = n – p – 1, 

 where  n  = the number of binomial samples,  p  = the number of predictors in the 
model (i.e.,  p  + 1 = number of parameters estimated). In this case,  n  = 14,  p  = 1, and 

so we have 12 df. The Pearson  X   
2
  statistic is also approximately distributed as 

  
2

1,
n p

c − −    when each  m  
 i 
  is  large enough . In this situation, the Pearson  X  

2
  statistic and 

the deviance  G  2  generally produce similar values, as they do in the current example. 

Logistic   regression output from R  

 Pearson’s X^2 = 11.999   

 We next look at diagnostic procedures for logistic regression. We begin by 
considering the concept of residuals in logistic regression.  

  8.1.6 Residuals for Logistic Regression 

 There are at least three types of residuals for logistic regression, namely,

  •  Response residuals  
 •  Pearson residuals and standardized Pearson residuals  
 •  Deviance residuals and standardized deviance residuals    

  Response residuals  are defined as the response minus the fitted values, that is, 
 

  response,  ˆ( )
i ii i

y mr xq= −
   

 where   ˆ( )
i

xq   is the  i th fitted value from the logistic regression model. However, 
since the variance of   

i i
y m    is not constant, response residuals can be difficult to 

interpret in practice. 
 The problem of nonconstant variance of   

i i
y m   is overcome by  Pearson residu-

als , which are defined to be  
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 Notice that 
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 This is commonly cited as the reason for the name Pearson residuals. 
 Pearson residuals do not account for the variance of ( )ˆ

i
xq     . This issue is over-

come by  standardized Pearson residuals , which are defined to be 
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 where  h  
 ii 
  is the  i th diagonal element of the hat matrix obtained from the weighted 

least squares approximation to the MLE. 
 Deviance residuals are defined in an analogous manner to Pearson residuals with 

the Pearson goodness-of-fit statistic replaced by the deviance  G  2 , that is, 
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2 2
,

n

i

i

r G=∑
   

 Thus,  deviance residuals  are defined by 
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= ∑   . Furthermore,  standardized deviance residuals  are defined 
to be 
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 Table  8.3  gives the values of the response residuals, Pearson residuals and the 
deviance residuals for the Michelin guide data in Table  8.1 . The Pearson residuals 
and deviance residuals are quite similar, since most of the  m  

 i 
  are somewhat larger 

than 1. Figure  8.3  shows plots of standardized Pearson and deviance residuals 
against Food Rating. Both plots produce very similar nonrandom patterns. Thus, 
model (8.1) is a valid model.      

  Figure 8.3    Plots of standardized residuals against Food Rating       
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 Table 8.3    Three types of residuals for the Michelin guide data in Table  8.1   

 Food rating, 
 x

   i   

 Response, 
  y mi i

 Response 
residuals 

 Pearson 
residuals 

 Deviance 
residuals 

 15  0.000  0.025  –0.035  –0.190  –0.266 
 16  0.000  0.042  –0.056  –0.244  –0.340 
 17  0.000  0.069  –0.089  –0.886  –1.224 
 18  0.133  0.111  –0.006  –0.069  –0.070 
 19  0.176  0.175  0.067  0.693   0.670 
 20  0.229  0.265  –0.064  –0.798  –0.815 
 21  0.519  0.38  0.155  1.602   1.589 
 22  0.250  0.509  –0.213  –1.482  –1.485 
 23  0.667  0.638  0.001  0.012   0.012 
 24  0.857  0.75  0.091  0.567   0.599 
 25  0.909  0.836  0.073  0.693   0.749 
 26  0.500  0.896  –0.399  –1.878  –1.426 
 27  0.857  0.936  –0.079  –0.862  –0.748 
 28  1.000  0.961  0.039  0.405   0.567 
          X  2  = 11.999   G  2  = 11.368 

ˆ( )xiq



 According to Simonoff (2003, p. 133) :

 The Pearson residuals are probably the most commonly used residuals, but the deviance 
residuals (or standardized deviance residuals) are actually preferred, since their distribution 
is closer to that of least squares residuals.     

  8.2 Binary Logistic Regression  

 A very important special case of logistic regression occurs when all the  m  
 i 
  equal 1. 

Such data are called binary data. As we shall see below, in this situation the good-
ness-of-fit measures  X  2  and  G  2  are problematic and plots of residuals can be diffi-
cult to interpret. To illustrate these points we shall reconsider the Michelin guide 
example, this time using the data in its binary form. 

  Example: Michelin and Zagat guides to New York City restaurants (cont.)  

 We again consider the 164 French restaurants included in the  Zagat Survey 2006: 

New York City Restaurants . This time we shall consider each restaurant separately 
and classify each one according to whether they were included in the in the 
 Michelin Guide New York City . As such we define the following binary response 
variable: 

 
  y

i
 = 1 if the restuarant is included in the Michelin guide

y
i
 = 0 if the restuarant is NOT included in the Michelin guide   

 We shall consider the following potential predictor variables:

    x  
 1 
 = Food = customer rating of the food (out of 30)  

   x  
 2 
 = Décor = customer rating of the decor (out of 30)  

   x  
 3 
 = Service = customer rating of the service (out of 30)  

   x  
 4 
 = Price = the price (in $US) of dinner (including one drink and a tip)    

 The data can be found on the book web site in the file   MichelinNY.csv. The first 
six rows of the data are given in Table  8.4 .     

 Table 8.4    Partial listing of the Michelin Guide data with a binary response  

 InMichelin, y 
i
  

 Restaurant 
name  Food  Decor  Service  Price 

 0  14 Wall Street  19  20  19  50 
 0  212  17  17  16  43 
 0  26 Seats  23  17  21  35 
 1  44  19  23  16  52 
 0  A  23  12  19  24 
 0  A.O.C.  18  17  17  36 
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 Let   q(x
1
)   denote the probability that a French restaurant with Zagat food rating 

 x  
1
  is included in the Michelin guide. We shall first consider the logistic regression 

model with the single predictor  x  
1
  given by (8.1). In this case the response variable, 

 y  
 i 
  is binary (i.e., takes values 0 or 1) and so each  m  

 i 
  equals 1. 

 Figure  8.4  shows a plot of  y  
 i 
  against  x  

1
 , food rating. The points in this figure have 

been jittered in both the vertical and horizontal directions to avoid over plotting. It 
is evident from Figure  8.4  that the proportion of  y  

 i 
  equalling one increase as Food 

Rating increases.  
 Figure  8.5  shows separate box plots of Food Rating for French restaurants 

included in the Michelin Guide and those that are not. It is clear from Figure  8.5  
that the distribution of food ratings for French restaurants included in the Michelin 
Guide has a larger mean than the distribution of food ratings for French restaurants 
not included in the Michelin Guide. On the other hand the variability in food ratings 
is similar in the two groups. Later we see that comparisons of means and variances 
of predictor variables across the two values of the binary outcome variable is an 
important step in model building.  

 Given below is the output from R for model (8.1) using the binary data in 
Table  8.4 . 

  Figure 8.4    Plot of  y  
 i 
  versus food rating       
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  Logistic regression output from R  

 Call:   
 glm(formula = y ~ Food, family = binomial(), data = MichelinNY)   
 Coefficients:   
  Estimate Std. Error z value Pr(>|z|)   
 (Intercept) -10.84154 1.86234 -5.821 5.83e-09 ***   
 Food 0.50124 0.08767  5.717 1.08e-08 ***   
 ---  
 (Dispersion parameter for binomial family taken to be 1)  

    Null deviance: 225.79 on 163 degrees of freedom   
 Residual deviance: 175.73 on 162 degrees of freedom   
 AIC: 179.73   

 Number of Fisher Scoring iterations: 4   

 For comparison purposes, given below is the output from R for model (8.1) using the cross-
tabulated data in Table  8.1 . 

 Call:   
 glm(formula = cbind(InMichelin, NotInMichelin) ~ Food, family = 
binomial)   

 Coefficients:   
  Estimate Std. Error z value Pr(>|z|)   
 (Intercept) -10.84154 1.86236 -5.821 5.84e-09 ***   
 Food 0.50124 0.08768 5.717 1.08e-08 ***   
 ---  

 (Dispersion parameter for binomial family taken to be 1)  

  Figure 8.5    Box plots of Food Ratings       
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    Null deviance: 61.427 on 13 degrees of freedom   
 Residual deviance: 11.368 on 12 degrees of freedom   
 AIC: 41.491   

 Notice that while the  model coefficients  (and standard errors etc.,)  are the same , 
the  deviance and AIC values differ  in the two sets of output. Why? We consider this 
issue next. 

  8.2.1 Deviance for the Case of Binary Data 

 For binary data all the  m  
 i 
  are equal to one. Thus, the saturated model,  S  estimates 

  q (x
i
)   by the observed proportion of “successes” at  x  

 i 
 , i.e., by    y

i
  . In symbols    

=
s

ˆ ( )
i i

x yq    . Let    
M

ˆ ( )
i

xq    denote the estimate of   q (x
i
)   obtained from the logistic 

regression model. Let    ˆ
i

y    denote the predicted value of  y  
 i 
  obtained from the logistic 

regression model then = M

ˆˆ ( )
i i

y xq   . Since   m
i
 = 1   the log-likelihood function is 

given by 
 

  
( ) ( ) ( ) ( ) ( )
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 Thus, the deviance is given by 
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 since using L’Hopital’s rule with   f(y) = – log (y)  and g(y)  = 1/y

  → →
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y y
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 Notice that the two terms in log  (L
S
)   above are zero for each  i , thus the deviance only 

depends on   log(L
M

)  . As such  the deviance does not provide an assessment of the 



goodness-of-fit of model (M) when all the m  
 i 
   are equal to one . Furthermore, the 

distribution of the deviance is not   c2  , even in any approximate sense. 
 However,  even when all the m  

 i 
   are equal to one, the distribution of the difference 

in deviances is approximately    c2  .  

  8.2.2 Residuals for Binary Data 

 Figure  8.6  shows plots of standardized Pearson residuals and standardized deviance 
residuals against the predictor variable, Food Rating for model (8.1) based on the 
binary data in Table  8.4 .  

 Both plots in Figure  8.6  produce very similar highly nonrandom patterns. In each 
plot the standardized residuals fall on two smooth curves, the one for which all the 
standardized residuals are positive corresponds to the cases for which  y  

 i 
  equals one, 

while the one for which all the standardized residuals are negative corresponds to the 
cases for which  y  

 i 
  equals zero. Such a phenomenon can exist irrespective of whether 

the fitted model is valid or not.  In summary, residual plots are problematic when the 

data are binary . Thus, we need to find another method other than residual plots to 
check the validity of logistic regression models based on binary data. 

 In the current example with just one predictor we can aggregate the binary data 
in Table  8.4  across values of the food rating to produce the data in Table  8.1 . Most 
of the values of  m  

 i 
  are somewhat greater than 1 and so in this situation, residual 

plots are interpretable in the usual manner. Unfortunately, however, aggregating 
binary data does not work well when there are a number of predictor variables. 

  Figure 8.6    Plots of standardized residuals for the binary data in Table 8.4       
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 Figure  8.7  shows a plot of  y  
 i 
  against  x  

1
 , Food Rating. The points in this figure 

have been jittered in both the vertical and horizontal directions to avoid over-plot-
ting. Figure  8.7  also includes the logistic fit for model (8.1) and as a solid curve and 
the loess fit (with    a = 2/3)  . The two fits agree reasonably (except possibly at the 
bottom) indicating that model (8.1) is an adequate model for the data.  

 We shall return to model checking plots with nonparametric fits later. In the 
meantime, we shall discuss transforming predictor variables.  

  8.2.3  Transforming Predictors in Logistic Regression 

for Binary Data 

 In this section we consider the circumstances under which the logistic regression 
model is appropriate for binary data and when it is necessary to transform predictor 
variables. The material in this section is based on Kay and Little (1987) and Cook 
and Weisberg (1999b , pp. 499–501). 

 Suppose that  Y  is a binary random variable (i.e., takes values 0 and 1) and that 
 X  is a single predictor variable. Then 
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  Figure 8.7    Plot of  y  
 i 
  versus food rating with the logistic and loess fits added       
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 First suppose that  X  is a discrete random variable (e.g., a dummy variable), then 
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 Taking logs of both sides of this last equation gives 
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 when  X  is a discrete random variable. Similarly when  X  is a continuous random 
variable, it can be shown that 
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 where  f ( x | Y  =  j ),  j  = 0,1, is the conditional density function of the predictor given 
the value of the response. 

 Thus, the log odds equal the sum of two terms, the first of which does not 
depend on  X  and thus can be ignored when discussing transformations of  X . We 
next look at the second term for a specific density. 

 Suppose that  f  ( x | Y  =  j ),  j  = 0,1, is a normal density, with mean   m
j
   and variance 
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 Thus, 
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 Thus,  when the predictor variable X is normally distributed with a different vari-

ance for the two values of Y, the log odds are a quadratic function of x.  
 When   2 2 2

1 0s s s= =   , the log odds simplifies to 
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 Thus,  when the predictor variable X is normally distributed with the same vari-

ance for the two values of Y, the log odds are a linear function of x, with the slope, 

   b
1
    equal to the difference in the mean of X across the two groups divided by the 

common variance of X in each group.  
 The last result can be extended to the case where we have  p predictor variables 

which have multivariate normal conditional distributions. If the variance–covari-

ance matrix of the predictors differs across the two groups then the log odds are a 

function of       = ≠2,   ( , 1,..., ; )
i i i j

x x and x x i j p i j    
 If the densities  f ( x | Y  =  j ),  j  = 0,1 are skewed the log odds can depend on both  x  

and log( x ). It does, for example, for the gamma distribution. Cook and Weisberg 
(1999b , p. 501) give the following advice: 

 When conducting a binary regression with a skewed predictor, it is often easiest to assess the 
need for  x  and log( x ) by including them both in the model so that their relative contributions 
can be assessed directly.   

 Alternatively, if the skewed predictor can be transformed to have a normal distri-
bution conditional on  Y , then just the transformed version of  X  should be included 
in the logistic regression model. 



 Next, suppose that the conditional distribution of  X  is Poisson with mean   l
j
  . 

Then 
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 Thus,  when the predictor variable X has a Poisson distribution, the log odds are 

a linear function of x. When X is a dummy variable, it can be shown that the log 

odds are also a linear function of x . 
 Figure  8.8  shows separate box plots of each of the four potential predictors, 

namely, Food Rating, Décor Rating, Service Rating and Price for French restau-
rants included in the Michelin Guide and those that are not. It is evident from 
Figure  8.8  that while the distributions of the first three predictors are reasonably 
symmetric the distribution of Price is quite skewed. Thus, we shall include both 
Price and log(Price) as potential predictors in our logistic regression model.  

 Examining Figure  8.8  further, we see that for each predictor the distribution of 
results for French restaurants included in the Michelin Guide has a larger mean than 
the distribution of results for French restaurants not included in the Michelin 
Guide. 

 Let   1 2 3 4 4( ) ( , , , , log( ))x x x x xq q=x    denote the probability that a French restau-
rant with the following predictor variables: 

  x  
1
  = Food rating,  x  

2
  = Décor rating,  x  

3
  = Service rating,  x  

4
  = Price, log( x  

4
 ) = 

log(Price). We next consider the following logistic regression model with these four 
predictor variables: 

 

   
{ }( )0 1 1 2 2 3 3 4 4 5 4

1
( )

1 exp log( )x x x x x
q

b b b b b b
=

+ − + + + + +
x    (8.2)   
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 Given that residual plots are difficult to interpret for binary data, we shall exam-
ine marginal model plots instead.  

  8.2.4 Marginal Model Plots for Binary Data 

 Consider the situation when there are just two predictors  x  
1
  and  x  

2
 . We wish to visu-

ally assess whether 
 

   
{ }( )0 1 1 2 2

1
( )

1 exp x x
q

b b b
=

+ − + +
x    (M1)   

 models    ( ) ( | ) ( 1 | )E Y P Yq = = = = =x X x X x    adequately. Again we wish to com-
pare the fit from (M1) with a fit from a nonparametric regression model (F1) 
where 

 

   1 2( ) ( , )f x xq =x    (F1)   

  Figure 8.8    Box plots of the four predictor variables       
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 Under model (F1), we can estimate   
1F 1E ( | )Y x   by adding a nonparametric fit to 

the plot of  Y  against  x  
1
 . We want to check that the estimate of   

F1 1E ( | )Y x    is close 
to the estimate of   

M1 1E ( | )Y x   . 
 Under model (M1), Cook and Weisberg (1997) utilized the following result: 
 

   
M M

⎡ ⎤= ⎣ ⎦1 11 1E ( | ) E E ( | ) |Y x Y x x    (8.3)   

 The result follows from the well-known general result re conditional expectations. 
 Under model (M1), we can estimate 
 

   
{ }( )M

q
b b b

= =
+ − + +1

0 1 1 2 2
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E ( | ) ( )

1 exp
Y x

x x
x

    

 by the fitted values

    

{ }( )
q

b b b
= =

+ − + +0 1 1 2 2

1ˆˆ ( ) .
ˆ ˆ ˆ1 exp

Y
x x

x     

 Utilizing (8.3) we can therefore estimate 
 

  
M M

⎡ ⎤= ⎣ ⎦1 11 1E ( | ) E E ( | ) |Y x Y x x
   

 by estimating   M
⎡ ⎤⎣ ⎦1 1E E ( | ) |Y x x   with an estimate of   ⎡ ⎤⎣ ⎦1

ˆE |Y x    .

 In summary, we wish to compare estimates under models (F1) and (M1) by 

comparing nonparametric estimates of   1E( | )Y x    and   ⎡ ⎤⎣ ⎦1
ˆE |Y x   . If the two non-

parametric estimates agree then we conclude that  x  
1
  is modelled correctly by model 

(M1). If  not  then we conclude that  x  
1
  is  not  modelled correctly by model (M1). 

 The left-hand plot in Figure  8.9  is a plot of  Y  and against  x  
1
 , Food Rating with the 

loess estimate of   
1E( | )Y x   included. The right-hand plot in Figure  8.9  is a plot of   Ŷ   from 

model (8.2) against  x  
1
 , Food Rating with the loess estimate of   ⎡ ⎤⎣ ⎦1

ˆE |Y x    included.  

 In general, it is difficult to compare curves in different plots. Thus, following 
Cook and Weisberg (1997) we shall from this point on include both nonparametric 
curves on the plot of  Y  against  x  

1
 . The plot of  Y  against  x  

1
  with the loess fit for   Ŷ     

against  x  
1
  and the loess fit for Y against  x  

1
  both marked on it is called a  marginal 

model plot  for  Y  and  x  
1
 . 

 Figure  8.10  contains  marginal model plots  for  Y  and each predictor in model 
(8.2). The solid curve is the loess estimate of   E(Y| Predictor)   while the dashed curve 
is the loess estimate of   E[Ŷ|Predictor]   where the fitted values are from model (8.2). 
The bottom right-hand plot uses these fitted values, that is, 

   0 1 1 2 2 3 3 4 4 5 4
ˆ ˆ ˆ ˆ ˆ ˆ log( )x x x x xb b b b b b+ + + + +    

as the horizontal axis.  
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  Figure 8.9    Plots of  Y  and against Ŷ   x  
1
 , Food Rating       
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  Figure 8.10    Marginal model plots for model (8.2)       
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 There is reasonable agreement between the two fits in each of the marginal 
model plots in Figure 8.10 except for the plots involving Décor and Service and to 
a lesser extent Price. At this point, one possible approach is to consider adding extra 
predictor terms involving Décor and Service to model (8.2). 

 Recall that when we have  p predictor variables which have multivariate normal 

conditional distributions, if the variance–covariance matrix of the predictors dif-

fers across the two groups then the log odds are a function of    x
i
, x

i

2 and x
i 
x

j
 (i,j = 

1,…, p; i ¹  j)  . A quadratic term in  x  
 i 
  is needed as a predictor if the variance of  x  

 i 
  

differs across the two values of  y . The product term   x
i 
x

j
   is needed as a predictor if 

the covariance of  x  
 i 
  and  x  

 j 
  differs across the two values of  y  (i.e., if the regression 

of  x  
 i 
  on  x  

 j 
  (or vice versa) has a different slope for the two values of  y .) 

 Next we investigate the covariances between the predictors Décor and Service. 
Figure  8.11  contains a plot of Décor and Service with different estimated slopes for 
each value of  y . It is evident from Figure  8.11   that the slopes in this plot differ. In 
view of this we shall expand model (8.2) to include a two-way interaction terms 
between  x  

2
  = Décor rating and  x  

3
  = Service rating. Thus we shall consider the fol-

lowing model:  

   
{ }( )

1
( )

1 exp
q

b¢
=

+ −
x

x
     

(8.4) 

 where   ( )1 2 3 4 4 2 3, , , , log( ),x x x x x x x¢ ¢=x    and   ( )1 2 3 4 5 6, , , , ,b¢ b b b b b b ¢=   . 

 Figure  8.12  contains  marginal model plots  for  Y  and the first five predictors in 
model (8.4). The solid curve is the loess estimate of   E(Y | predictor)   while the 

  Figure 8.11    Plots of Décor and Service ratings with different slopes for each value of  y        

15 20 25

15

20

25

Decor Rating

S
e
rv

ic
e
 R

a
ti
n
g

In Michelin Guide?

No
Yes

 8.2 Binary Logistic Regression 289



290 8 Logistic Regression

dashed curve is the loess estimate of   E[Ŷ | predictor]  . The bottom right-hand plot 
uses   b̂   ¢ x as the horizontal axis.  

 Comparing the plots in Figure  8.12  with those in Figure  8.10 , we see that there 
is better agreement between the two sets of fits in Figure.  8.12 , especially for the 
variables, Décor and Service. There is still somewhat of an issue with the marginal 
model plot for Price, especially at high values. 

  Regression output from R  

 Analysis of Deviance Table   
 Model 1: y ~ Food + Decor + Service + Price + log(Price)   
 Model 2: y ~ Food + Decor + Service + Price + log(Price)   

 + Service:Decor   
  Resid. Df Resid. Dev Df Deviance P(>|Chi|)   
 1 158 136.431   
 2 157 129.820 1 6.611 0.010   

  Figure 8.12    Marginal model plots for model (8.4)       
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 Recall that the difference in deviance can be used to compare nested models. For 
example, we can compare models (8.2) and (8.4) in this way. The output above 
from R shows that the addition of the interaction term for Décor and Service has 
significantly reduced the deviance ( p -value = 0.010). 

 We next examine leverage values and standardized deviance residuals for model 
(8.4) (see Figure  8.13 ). The leverage values are obtained from the weighted least 
squares approximation to the maximum likelihood estimates. According to 
Pregibon (1981, p. 173) the average leverage is equal to   (p + 1)/n = 7/164 = 0.0427  .
We shall use the usual cut-off of twice the average, which in this case equals 0.085. 
The three points with the largest leverage values evident in Figure  8.13  correspond 
to the restaurants Arabelle, Alain Ducasse and per se. The price of dinner at each 
of these restaurants is $71, $179 and $201, respectively. Looking back at the box 
plots of Price in Figure  8.8  we see that these last two values are the highest values 
of Price. Thus, for at least two of these points their high leverage values are mainly 
due to their extreme values of Price.  

 We next look at the output from R for model (8.4). 

  Output from R  

 Call:   
 glm(formula = y ~ Food + Decor + Service + Price + log(Price) + 
Service:Decor, family = binomial(), data = MichelinNY)   

  Figure 8.13    A plot of leverage against standardized deviance residuals for (8.4)       
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 Coefficients:   
  Estimate Std. Error z value Pr(>|z|)   
 (Intercept) -70.85308 15.45786 -4.584 4.57e-06 ***   
 Food 0.66996 0.18276 3.666 0.000247 ***   
 Decor 1.29788 0.49299 2.633 0.008471 **   
 Service 0.91971 0.48829 1.884 0.059632 .   
 Price -0.07456 0.04416 -1.688 0.091347 .   
 log(Price) 10.96400 3.22845 3.396 0.000684 ***   
 Decor:Service -0.06551 0.02512 -2.608 0.009119 **   
 ---   
 (Dispersion parameter for binomial family taken to be 1)       

    Null deviance: 225.79 on 163 degrees of freedom   
 Residual deviance: 129.82 on 157 degrees of freedom   
 AIC: 143.82   
 Number of Fisher Scoring iterations: 6   

 Given that the variable Price is only marginally statistically significant (Wald 
 p -value = 0.091), we shall momentarily remove it from the model. Thus, we shall 
consider the following model:  

   
{ }( )

1
( )

1 exp
q

b¢
=

+ −
x

x
    

(8.5)

  

 where   ( )1 2 3 4 2 3, , , log( ),x x x x x x ′=′x   ,   ( )1 2 3 5 7, , , ,b¢ b b b b b ′=   . We next test  

  H
0
 : b

4
 = 0 (i.e., model (8.5))   

 against  

  H
A
 : b

4 
¹ 0 (i.e., model (8.4))   

 using the difference in deviance between the two models. The output from R for 
this test is given next. 

  Output from R  

 Analysis of Deviance Table   
 Model 1: y ~ Food + Decor + Service + log(Price)   
             + Service:Decor   
 Model 2: y ~ Food + Decor + Service + Price + log(Price)   
             + Service:Decor   
  Resid. Df Resid. Dev Df Deviance P(>|Chi|)   
 1 158 131.229   
 2 157 129.820 1 1.409 0.235   

 The  p -value from the difference in deviances ( p -value = 0.235) is higher than the 
corresponding Wald  p -value for the coefficient of Price ( p -value = 0.091). As fore-
shadowed earlier, this example illustrates that Wald tests and tests based on the 
difference in deviances can result in quite different  p -values. Additionally, in view of 
the leverage problems associated with the variable Price (which may lead to under 
estimation of the standard error of its regression coefficient), it seems that model (8.5) 
is to be preferred over model (8.4). The output from R for model (8.5) is given next. 



  Output from R  

 Call:   
 glm(formula = y ~ Food + Decor + Service + log(Price)   
 + Service:Decor, family = binomial(), data = MichelinNY)   
 Coefficients:   
  Estimate Std. Error z value Pr(>|z|)   
 (Intercept) -63.76436 14.09848 -4.523 6.10e-06 ***   
 Food 0.64274 0.17825 3.606 0.000311 ***   
 Decor 1.50597 0.47883 3.145 0.001660 **   
 Service 1.12633 0.47068 2.393 0.016711 *   
 log(Price) 7.29827 1.81062 4.031 5.56e-05 ***   
 Decor:Service -0.07613 0.02448 -3.110 0.001873 **   
 (Dispersion parameter for binomial family taken to be 1)   

    Null deviance: 225.79 on 163 degrees of freedom   
 Residual deviance: 131.23 on 158 degrees of freedom   
 AIC: 143.23   
 Number of Fisher Scoring iterations: 6   

 All of the regression coefficients in model (8.5) are highly significant at the 5% 
level. Interestingly, the coefficients of the predictors Food, Service, Décor and 
log(Price) are positive implying that (all other things equal) higher Food, Service 
and Décor ratings and higher log(Price) in the Zagat guide increases the chance of 
a French restaurant being included in the Michelin Guide, as one would expect. The 
coefficient of the interaction term between Service and Décor is negative moderat-
ing the main effects of Service and Décor. 

 We next check the validity of model (8.5) using marginal model plots (see 
Figure  8.14 ). These marginal model plots show reasonable agreement across the 
two sets of fits indicating that (8.5) is a valid model.  

 As a final validity check we examine leverage values and standardized deviance 
residuals for model (8.5) (see Figure  8.15 ). We shall again use the usual cut-off of 
0.073, equal to twice the average leverage value. A number of points are high-
lighted in Figure  8.15  that are worthy of further investigation. After that removing 
the variable Price, the expensive restaurants Alain Ducasse and per se are no longer 
points of high leverage.  

 Table  8.5  provides a list of the points highlighted as outliers in Figure  8.14 . As 
one would expect, the restaurants either have a low estimated probability of being 
included in the Michelin Guide and are actually included (i.e.,  y  = 1) or have a high 
estimated probability of being included in the Michelin Guide and are not included 
(i.e.,  y  = 0). The former group of “lucky” restaurants consists of     

  Gavroche, Odeon, Paradou and Park Terrace Bistro  

 The latter group of “unlucky” restaurants consists of 
  Atelier, Café du Soleil and Terrace in the Sky . 
 Finally, we shall examine just one of the restaurants listed in Table  8.5 , namely, 

Atelier. Zagat’s 2006 review of Atelier (Gathje and Diuguid, 2005) reads as follows: 

 “Dignified” dining “for adults” is the métier at the Ritz-Carlton Central Park’s “plush” 
New French, although the food rating is in question following the departure of chef Alain 
Allegretti; offering a “stately environment” where the “charming” servers “have ESP”, it 
caters to a necessarily well-heeled clientele.   
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 One plausible explanation for the exclusion of Atelier from the Michelin Guide 
is that the Michelin inspectors rated Atelier after the departure of chef Alain 
Allegretti. Interestingly, Atelier is listed as “Closed” in the 2007 Zagat Guide.   

  8.3 Exercises  

    1.    Chapter 6 of Bradbury (2007), a book on baseball, uses regression analysis to 
compare the success of the 30 Major League Baseball teams. For example, the 
author considers the relationship between     x  

 i 
 , market size (i.e., the population in 

millions of the city associated with each team) and       Y  
 i 
 , the number of times team 

 i  made the post-season playoffs in the  m  
 i 
 =10 seasons between 1995 and 2004.        

  Figure 8.14    Marginal model plots for model (8.5)       
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 The author found that “it is hard to find much correlation between market size 
and … success in making the playoffs. The relationship … is quite weak.” The 
data is plotted in Figure  8.16  and it can be found on the book web site in the file 
playoffs.txt. The output below provides the analysis implied by the author’s 
comments.

    (a)    Describe in detail two major concerns that potentially threaten the validity  
of the analysis implied by the author’s comments  .

    (b)    Using an analysis which is appropriate for the data, show that there is very 
strong evidence of a relationship between  Y  and  x           .

  Figure 8.15    A plot of leverage against standardized deviance residuals for (8.5)       
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 Table 8.5    “Lucky” and “unlucky” restaurants according to model (8.5)  

 Case 
 Estimated 
probability   y   Restaurant name  Food  Decor  Service  Price 

 14  0.971  0  Atelier  27  25  27  95 
 37  0.934  0  Café du Soleil  23  23  17  44 
 69  0.125  1  Gavroche  19  15  17  42 
 133  0.103  1  Odeon  18  17  17  42 
 135  0.081  1  Paradou  19  17  18  38 
 138  0.072  1  Park Terrace Bistro  21  20  20  33 
 160  0.922  0  Terrace in the Sky  23  25  21  62 
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  R output for Question 1:  

 Call:   
 lm(formula = PlayoffAppearances ~ Population)   
 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 1.7547 0.7566 2.319 0.0279 *   
 Population 0.1684 0.1083 1.555 0.1311   
 ---   
 Signif. codes: 0 ‘ ’ 0.001 ‘ ’ 0.01 ‘ ’ 0.05 ‘.’ 0.1 ‘ ’ 1   
 Residual standard error: 2.619 on 28 degrees of freedom   
 Multiple R-squared: 0.07952, Adjusted R-squared: 0.04664   
 F-statistic: 2.419 on 1 and 28 DF, p-value: 0.1311  

   2.    This question is based on one of the data sets discussed in an unpublished manu-
script by Powell, T. and Sheather, S. (2008) entitled “ A Theory of Extreme 

Competition ”. According to Powell and Sheather: 

 This paper develops a model of competitive performance when populations compete …. 
We present a theoretical framework … and empirical tests in chess and … national pag-
eants. The findings show that performance in these domains is substantially predictable 
from a few observable features of population and economic geography.       

 In this question we shall consider data from the Miss America pageant, which 
was founded in Atlantic City in 1921, and 81 pageants have been conducted 
through 2008. In particular we will develop a logistic regression model for the 

  Figure 8.16    A plot of  Y  
 i 
  against  x  
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proportion of top ten finalists for each US state for the years 2000 to 2008. 
According to Powell and Sheather: 

 Eligibility for the Miss America pageant is limited to never-married female U.S. citizens 
between the ages of 17 and 24. To measure population size, we obtained data for this 
demographic segment for each U.S. state and the District of Columbia from the 2000 U.S. 
Census. As a measure of participation inducements, we obtained data on the number of 
qualifying pageants conducted in each state, on the assumption that qualifying pageants 
reflect state-level infrastructure and resource commitments. As a geographic measure, we 
used the latitude and longitude of each state capital and Washington DC, on the assumption 
that state locations convey information about the regional cultural geography of beauty 
pageants (in particular, beauty pageants are widely believed to receive greater cultural sup-
port south of the Mason-Dixon line). To measure search efficacy, we obtained data on the 
total land and water area (in square miles) for each state and the District of Columbia, on 
the assumption that search is more difficult over larger geographic areas.   

 They consider the following outcome variable and potential predictor 
variables:

    Y  =  Number of times each US state (and the District of Columbia) has produced a 
top ten finalist for the years 2000–2008  

   x  
1
  = log(population size)  

   x  
2
  =  Log(average number of contestants in each state’s final qualifying pageant 

each year between 2002 and 2007)  
   x  

3
  = Log(geographic area of each state and the District of Columbia)  

   x  
4
  = Latitude of each state capitol and  

   x  
5
  = Longitude of each state capitol, and    

 The data can be found on the course web site in the file .  MissAmericato2008.txt.

   (a) Develop a logistic regression model that predicts  y  from  x  
1
 ,  x  

2
 ,  x  

3
 ,  x  

4
  and  x  

5
  

such that each of the predictors is significant at least at the 5% level. Use 
marginal model plots to check the validity of the full model and the final 
model (if it is different from the full model).  

  (b) Identify any leverage points in the final model developed in (a). Decide if 
they are “bad” leverage points.  

  (c) Interpret the regression coefficients of the final model developed in (a).    

    3.    Data on 102 male and 100 female athletes were collected at the Australian 
Institute of Sport. The data are available on the book web site in the file ais.txt. 
Develop a logistic regression model for gender ( y  = 1 corresponds to female) or 
( y  = 0 corresponds to male) based on the following predictors (which is a subset 
of those available):

   RCC, read cell count  
  WCC, white cell count  
  BMI, body mass index        

 (Hint: Use marginal model plots to aid model development.) 
    4.    A number of authors have analyzed the following data on heart disease. Of key 

interest is the development of a model to determine whether a particular patient 
has heart disease (i.e., Heart Disease = 1), based on the following predictors:
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    x  
1
  = Systolic blood pressure  

   x  
2
  = A measure of cholesterol  

   x  
3
  = A dummy variable (= 1 for patients with a family history)  

   x  
4
  = A measure of obesity and  

   x  
5
  = Age.        

 We first consider the following logistic regression model with these five predic-
tor variables:  

   
{ }( )=

+ − + + + + +0 1 1 2 2 3 3 4 4 5 5

1
( )

1 exp x x x x x
q

b b b b b b
x

    (8.6)  

 where  

  ( ) ( | ) ( 1 | )x E Y X x P Y X xq = = = = =    

 Output for model (8.6) is given below along with associated plots (Figures 8.17 
and 8.18). The data (HeartDiseare, CSV) can be found on the book web site.

  Figure 8.17    Marginal model plots for model (8.6)       
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    (a)    Is model (8.6) a valid model for the data? Give reasons to support your answer.  
    (b)    What extra predictor term or terms would you recommend be added to 

model (8.6) in order to improve it. Please give reasons to support each extra 
term.  

    (c)    Following your advice in (b), extra predictor terms were added to model 
(8.6) to form model (8.7). We shall denote these extra predictors as 
  1 1 2 4( ) and ( )f x f x    (so as not to give away the answer to (b)). Marginal model 
plots from model (8.7) are shown in Figure 8.19. Is model (8.7) a valid 
model for the data? Give reasons to support your answer.  

    (d)    Interpret the estimated coefficient of  x  
3
  in model (8.7).     

  Output from R for model (8.6)  

 Call:   
 glm(formula = HeartDisease ~ x1 + x2 + x3 + x4 + x5, family = 
binomial(), data = HeartDisease)   
 Coefficients:   
  Estimate Std. Error z value Pr(>|z|)   
 (Intercept) -4.313426 0.943928 -4.570 4.89e-06 ***   
 x1 0.006435 0.005503 1.169 0.24223   
 x2 0.186163 0.056325 3.305 0.00095 ***   
 x3 0.903863 0.221009 4.090 4.32e-05   
 x4 -0.035640 0.028833 -1.236 0.21643   
 x5 0.052780 0.009512 5.549 2.88e-08 ***   
 (Dispersion parameter for binomial family taken to be 1)   

    Null deviance: 596.11 on 461 degrees of freedom   
 Residual deviance: 493.62 on 456 degrees of freedom   
 AIC: 505.62   
 Number of Fisher Scoring iterations: 4   

  Figure 8.18    Kernel density estimates of  x  
 1 
  and  x  
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  Output from R for model (8.7)  

 Call:   
 glm(formula = HeartDisease ~ x1 + f1x1 + x2 + x3 + x4 + f2x4 + 
x5, family = binomial(), data = HeartDisease)   
 Coefficients:   
  Estimate Std. Error z value Pr(>|z|)   
 (Intercept) 75.204768 33.830217 2.223 0.026215 *   
 x1 0.096894 0.052664 1.840 0.065792 .   
 f1x1 -13.426632 7.778559 -1.726 0.084328 .   
 x2 0.201285 0.057220 3.518 0.000435 ***   
 x3 0.941056 0.224274 4.196 2.72e-05 ***   
 x4 0.384608 0.208016 1.849 0.064467 .   
 f2x4 -11.443233 5.706058 -2.005 0.044915 *   
 x5 0.056111 0.009675 5.800 6.64e-09 ***   
 (Dispersion parameter for binomial family taken to be 1)   

  Figure 8.19    Marginal model plots for model (8.7)       
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    Null deviance: 596.11 on 461 degrees of freedom   
 Residual deviance: 486.74 on 454 degrees of freedom   
 AIC: 502.74   
 Number of Fisher Scoring iterations: 4   

    5.    This difficult realistic problem is based on a case study from Shmueli, Patel and 
Bruce (2007, pp. 262–264). The aim of the case is to develop a logistic regres-
sion model which will improve the cost effectiveness of the direct marketing 
campaign of a national veterans’ organization. The response rate to recent mar-
keting campaigns was such that 5.1% of those contacted made a donation to the 
organization. Weighted sampling of recent campaigns was used to produce a 
data set with 3,120 records consisting of 50% donors and 50% nondonors. The 
data are available after free registration at the author’s book web site http://
www.dataminingbook.com/. Randomly split the data file into a training file 
(FundTrain.csv) and a test file (FundTest.csv) both with 1,560 records. The 
outcome variable is 
   TARGET_B which = 1 for donors and 0 otherwise.        
 The following predictor variables are available

   HOMEOWNER = 1 for homeowners and 0 otherwise  
  NUMCHLD = number of children  
  INCOME = household income rating on a seven-point scale  
  GENDER = 1 for male and 0 for female  
  WEALTH = wealth rating on a ten-point scale (0 to 9)    
 (Each wealth rating has a different meaning in each state.)
   HV = Average Home Value in potential donor’s neighborhood    
 (in hundreds of dollars)
   ICmed = Median Family Income in potential donor’s neighborhood    
 (in hundreds of dollars)
   ICavg = Average Family Income in potential donor’s neighborhood    
 (in hundreds of dollars)
   IC15 = % earning less than $15 K in potential donor’s neighborhood  
  NUMPROM = Lifetime number of promotions received to date  
  RAMNTALL = Dollar amount of lifetime gifts to date  
  LASTGIFT = Dollar amount of most recent gift  
  TOTALMONTHS = Number of months from last donation to the      last time the 
case was updated
   TIMELAG = Number of months between first and second gift  
  AVGGIFT = Average dollar amount of gifts to date.  
  ZIP = Code for potential donor’s zip code (2 = 20000 – 39999,    
 3 = 40000 - 59999, 4 = 60000 - 79999 & 5 = 8000 - 99999) 

 PART 1: Using the training data

   (a)    Fit a logistic regression model using each of the predictor variables except ZIP. 
At this stage do not transform any of the predictors.  
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   (b)    Use marginal model plots to show that the model in part (a) is not a valid 
model.  

   (c)    Decide which predictor variables may benefit from being transformed and find 
a reasonable transformation for each of these variables.  

   (d)    Since the wealth ratings have a different meaning within each state, create one 
or more predictors which represents the interaction between ZIP and 
WEALTH. Investigate the relationship between TARGET_B and these 
predictor(s).  

   (e)    Fit a logistic regression model to the training data utilizing what you discovered 
in (c) and (d).  

   (f)    Use marginal model plots to decide whether the model in part (e) is a valid 
model or not.  

   (g)    Consider adding further interaction terms to your model in (e). Establish a final 
model for TARGET_B.     

 PART 2: Using the test data

   (a)    Use the logistic regression model you have developed in part 1 to predict 
whether a person will make a donation or not.  

   (b)    Compare your predictions in part (a) with the actual results in TARGET_B. 
Quantify how well your model worked.     

    6.    Dr. Hans Riedwyl, a statistician at the University of Berne was asked by local 
authorities to analyze data on Swiss Bank notes. In particular, the statistician 
was asked to develop a model to predict whether a particular banknote is 
counterfeit ( y  = 0) or genuine ( y  = 1) based on the following physical meas-
urements (in millimeters) of 100 genuine and 100 counterfeit Swiss Bank 
notes:

   Length = length of the banknote  
  Left = length of the left edge of the banknote  
  Right = length of the right edge of the banknote  
  Top = distance from the image to the top edge  
  Bottom = distance from the image to the bottom edge  
  Diagonal = length of the diagonal        

 The data were originally reported in Flury and Riedwyl (1988) and they can 
be found in alr3 library and on the book web site in the file banknote.txt. 
Figure  8.20  contains a plot of Bottom and Diagonal with different symbols for 
the two values of  y .

   (a)    Fit a logistic regression model using just the last two predictor variables listed 
above (i.e., Bottom and Diagonal). R will give warnings including “fitted prob-
abilities numerically 0 or 1 occurred”.  

   (b)    Compare the predicted values of  y  from the model in (a) with the actual values 
of  y  and show that they coincide. This is a consequence of the fact that the 
residual deviance is zero to many decimal places. Looking at Figure  8.20  we see 



that the two predictors completely separate the counterfeit ( y  = 0) and genuine ( y  
= 1) banknotes – thus producing a perfect logistic fit with zero residual devi-
ance. A number of authors, including Atkinson and Riani (2000, p. 251), com-
ment that for perfect logistic fits, the estimates of the   β′  s approach infinity and 
the  z -values approach zero.            

  Figure 8.20    A plot of two of the predictors of counterfeit Swiss Bank notes       
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   Chapter 9   

  Serially Correlated Errors         

 In many situations data are collected over time. It is common for such data sets to 
exhibit serial correlation, that is, results from the current time period are correlated 
with results from earlier time periods. Thus, these data sets violate the assumption 
that the errors are independent, an important assumption necessary for the validity 
of least-squares-based regression methods. We begin by discussing the concept of 
autocorrelation, the correlation between a variable at different time points. We then 
show how generalized least squares (GLS) can be used to fit models with autocor-
related errors. Finally, we demonstrate the benefits of transforming GLS models 
into least squares (LS) models when it comes to examining model diagnostics. 

  9.1 Autocorrelation  

 Throughout this section and the next we shall consider the following example, 
which we first discussed in Chapter 3. 

  Estimating the price elasticity of a food product (cont.)  

 Recall that we want to understand the effect of price on sales and in particular to 
develop a model to estimate the percentage effect on sales of a 1% increase in price. 
This example is based on a case from Carlson (1997, p. 37). In Chapter 3, we con-
sidered weekly sales (in thousands of units) of Brand 1 at a major US supermarket 
chain over a year as a function of the price each week. In particular, we considered 
a model of the form 

     = + +0 1log(Sales ) log(Price )
t t

eb b    (9.1)

  where Sales 
 t 
  denotes sales of brand 1 in week  t  and Price 

 t 
  denotes the price of brand 

1 in week  t . We found a nonrandom pattern (somewhat similar to a roller coaster) 
in the plot of standardized residuals from model (9.1). Thus, we were not satisfied 
with model (9.1). 

 Two other potential predictor variables are available, namely, 

S.J. Sheather, A Modern Approach to Regression with R, 305
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 Week = week of the year 
 Promotion 

 t 
  = A dummy variable which indicates whether a 

 promotion occurred for brand 1 in week  t  with 
 0 = No promotion and 
 1 =  Price reduction advertised in the newspaper and   in an in-store 

display 
 The data can be found on the course web site in the file confood2.txt. Table  9.1  
gives the first four rows of the data.  

 Figure  9.1  contains a plot of log(Sales 
 t 
 ) against log(Price 

 t 
 ). We see from Figure 

 9.1  that log(Sales 
 t 
 ) and log(Price 

 t 
 ) appear to be linearly related, with promotions 

having a dramatic effect on log(Sales 
 t 
 ). However, Figure  9.1  ignores the fact that 

the data are collected over time.  
 Figure  9.2  contains a plot of log(Sales) against Week (a so-called time series plot). 

It is clear from Figure  9.2  that weeks with above average values of log(Sales) are gener-
ally followed by above average values of log(Sales) and that weeks with below average 
values of log(Sales) are generally followed by below average values of log(Sales). 
Another way of expressing this is to say that log(Sales) in week  t  are positively 

  Table 9.1    An incomplete listing of the sales data (confood2.txt)    

 Week,  t   Promotion
  t 
   Price 

t   
    Sales 

 t 
   SalesLag1

  t 
  

 1  0  0.67  611  NA 

 2  0  0.66  673  611 

 3  0  0.67  710  673 

 4  0  0.66  478  710 

  Figure 9.1     A scatter plot of log(Sales 
 t 
 ) against log(Price 

 t 
 )       
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  Figure 9.2    A time series plot of log(Sales 
 t 
 )       
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  Figure 9.3    Plot of log(Sales) in week  t  against log(Sales) in week  t  – 1       

 correlated with log(Sales) in week  t  – 1. The latter quantity (i.e., log(Sales) in week 
 t  – 1) is commonly referred to as log(Sales) lagged by 1 week or log(SalesLag1).  

 Figure  9.3  contains a plot of log(Sales) in week  t  against log(Sales) in week  t  – 1, 
(i.e., of log(Sales) against log(SalesLag1)). We see from Figure  9.3  that there is a 
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positive correlation between log(Sales) in week  t  and log(Sales) in week  t  – 1. Such 
a correlation is commonly referred to as  lag 1 autocorrelation .  

 A natural question to ask at this stage is whether there is also a positive correla-
tion between log(Sales) in week  t  and log(Sales) in weeks  t  – 2,  t  – 3, …, i.e. 
between   Y

t
   = log(Sales) 

 t 
  and   Y

t - 2
 ,Y

t - 3
  , etc. We could ascertain this by looking at 

scatter plots of   Y
t
   and   Y

t - 2
  ,   Y

t
   and   Y

t - 3
   , etc . , as in Figure  9.3 . However, it is both 

cumbersome and time consuming to produce so many scatter plots. 
 Instead of producing lots of scatter plots like Figure  9.3 , it is common statistical 

practice to look at values of the correlation between  Y  and the various values of 
lagged  Y  for different periods. Such values are called  autocorrelations.  The auto-
correlation of lag  l  is the correlation between  Y  and values of  Y  lagged by  l  periods, 
i.e., between   Y

t  
 and   Y

t - l
  , i.e., 

   

−
= +

=

− −
=

−

∑

∑
1

2

1

( )( )

Autocorrelation( )

( )

n

t t l

t l

n

t

t

y y y y

l

y y

    
 Figure  9.4  contains a plot of the first 17 autocorrelations of log(Sales). The dashed 
lines correspond to   –2 ¤Ö n

—
   and   +2 ¤Ö n

—
  , since autocorrelations are declared to be 

statistically significantly different from zero if they are less than   –2 ¤Ö n
—

   or greater 
than   +2 ¤Ö n

—
    (i.e., if they are more than two standard errors away from zero).  

  Figure 9.4    Autocorrelation function for log(Sales)       
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 We see from Figure  9.4  that just the lag 1 autocorrelation function exceeds the 
normal two standard error cut-off value. Thus, last week’s value of log(Sales) sig-
nificantly affects this week’s value of log(Sales). 

  Ignoring the autocorrelation effect  

 In order to demonstrate the effect of ignoring autocorrelation, we shall first fit a 
model without including it. Thus, we shall consider the model 

     0 1 2 3log(Sales ) log(Price ) Promotion
t t t

t eb b b b= + + + +
    (9.2)

 We begin somewhat naively by assuming the errors are independent. Figure  9.5  
contains diagnostic plots of the standardized residuals from least squares for model (9.2).  

 The top right plot in Figure  9.5  is highly nonrandom with positive (negative) 
standardized residuals generally followed by positive (negative) standardized 
residuals. Thus, there is positive autocorrelation present in the standardized 
residuals. To investigate this further, we next examine a plot of the autocorrelation 
function of the standardized residuals from model (9.2) (see Figure  9.6 ).  

 We see from Figure  9.6  that the lag 1 autocorrelation is highly statistically sig-
nificant for the standardized residuals. Thus, there is strong evidence that the errors 
in model (9.2) are correlated over time thus violating the assumption of independ-
ence of the errors. We shall return to this example in the next section at which point 
we will allow for the autocorrelation that is apparent.  

  Figure 9.5    Plots of standardized residuals from LS fit of model (9.2)       
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  9.2  Using Generalized Least Squares When the Errors 

Are AR(1)  

 We next examine methods based on generalized least squares which allow the 
errors to be autocorrelated (or serially correlated, as this is often called). 

 We shall begin by considering the simplest situation, namely, when  Y  
 t 
  can be 

predicted from a single predictor,  X  
 t 
  and the errors  e  

 t 
  follow an autoregressive process 

of order 1 (AR(1)), that is, 

   −= + + 2
0 1 1,where = e +  and are iid (0, )

t t t t t t t
Y x e e N ub b r u u s     

 The errors have the following properties: 

   ( ) ( ) ( ) ( )1 1 tE  = E E E 0
t t t t

e e er u r u− −+ = + =     

 and 

   

( ) ( )
( )
( ) ( ) ( ) ( )

−

− −

⎡ ⎤+⎣ ⎦
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2
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  Figure 9.6    Autocorrelation function of the standardized residuals from model (9.2)       
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 since   u
t
   is independent of  e  

 t– 
  
1
 . Rearranging this last equation gives 

 
2

2

2
=

1
v

e

s
s

r−
      

 Thus, the first-order autocorrelation among the errors,  e  
 t 
  is given by 

   

( ) ( )
( )−−

−

−

= = =11
1 2 2

1

ECov( , )
Corr( , )

Var Var

t tt t

t t

t t e e

e ee e
e e

e e
r

s s

    

 since 

   ( ) ( ) ( ) ( ) ( )− − − − −⎡ ⎤= + = + =⎣ ⎦
2 2

1 1 1 1 1E E E E E
t t t t t t t t e

e e e e e er u r u rs     

 In a similar way, we can show that 

   − = =Corr( , ) 1,2,...l

t t l
e e lr     

 When   r < 1  , these correlations get smaller as  l  increases. 
 Hill, Griffiths and Judge (2001, p. 264) show that the least squares estimate of 

  b
1
   has the following properties: 

   ( )=1LS 1
ˆE b b     

 and 

   ( ) ( )( ) −

≠

⎛ ⎞
= + − −⎜ ⎟⎝ ⎠

∑∑
2

| |
1LS

1ˆ 1 i je

i j

i j

Var x x x x
SXX SXX

s
b r

    

 When the errors  e  
 t 
  are independent   (r= 0)   this reduces to 

 ( )=
2

1LS
ˆ eVar

SXX

s
b       

 agreeing with what we found in Chapter 2. 
 Thus,  using least squares and ignoring autocorrelation when it exists  will result 

in consistent estimates of   b
1
   but incorrect estimates of the variance of   

LS1b̂    invali-

dating resulting confidence intervals and hypothesis tests.  

  9.2.1 Generalized Least Squares Estimation  

 Define the   (n ×1)   vector,   Y   and the   n×(p + 1)   matrix,   X   by 



312 9 Serially Correlated Errors

 
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟= =
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

⋯

⋯

⋮ ⋮ ⋮

⋯

11 11

21 22

1

1

1
      

1

p

p

n n np

x xy

x xy

y x x

Y X

   

Also define the   (p + 1) × 1   vector,   b   of unknown regression parameters and the 
  (n ×1)   vector,    e   of errors 

   

0 1

1 2

p n
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e
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 In general matrix notation, the linear regression model is 

   Y = Xb + e    

 However, instead of assuming that the errors are independent we shall assume that 

   e~N(0,Σ )    

 where   Σ    is a symmetric   (n ×n)   matrix with ( i ,  j ) element equal to Cov( e  
 i 
 , e  

 j 
 ). 

 Consider the case when the errors  e  
 t 
  follow an autoregressive process of order 1 

(AR(1)), that is, when 

 
2

1 t t  = e + and are i.i.d. (0, )
t t

e N ur u u s−   

 Then, it can be shown that 
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 since 

   ( ) ( )− −= = 2
1 1Cov E

t t t t e
e e e e rs     

 It can be shown that the log-likelihood function is given by 

   

( )
( ) ( ) ( )

2

1

log ( , , | )

1 1
log(2 ) log(det )

2 2 2

e
L

n

b r s
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The maximum likelihood estimates of   b, r,s
e

2   can be obtained by maximizing this 
function. Given   r,s

e

2   (or estimates of these quantities), minimizing the third term 
in the log-likelihood gives   b̂  

GLS
 the generalized least squares (GLS) estimator of   b  . 

It can be shown that 

   GLS

1 1 1ˆ ( )b ¢ ¢− − −= ∑ ∑X X X Y     

 Comparing this with the least squares estimator of   b  

   LS

−= 1ˆ ( )b ¢ ¢X X X Y     

 the important role of the inverse of the variance–covariance matrix of the errors is 
clearly apparent. 

  Estimating the price elasticity of a food product (cont.)  

 Given below is the output from R associated with fitting model (9.2) using maximum 
likelihood and assuming that the errors are AR(1). 

  Output from R   

 Generalized least squares fit by maximum likelihood   
 Model: log(Sales) ~ log(Price) + Promotion + Week   
 Data: confood2   

 AIC BIC logLik   
 6.537739 18.2452 2.731131   
 Correlation Structure: AR(1)   
 Formula: ~Week   
 Parameter estimate(s):   

 Phi   
 0.5503593   

 Coefficients:   
 Value Std.Error t-value p-value   

 (Intercept) 4.675667 0.2383703 19.615142 0.000   
 log(Price) -4.327391 0.5625564 -7.692368 0.000   
 Promotion 0.584650 0.1671113 3.498565 0.001   
 Week 0.012517 0.0046692 2.680813 0.010   

 Residual standard error: 0.2740294   
 Degrees of freedom: 52 total; 48 residual   

 Approximate 95% confidence intervals   

 Coefficients:   
  lower est. upper   
 (Intercept) 4.196391300 4.67566686 5.15494243   
 log(Price) -5.458486702 -4.32739122 -3.19629575   
 Promotion 0.248649971 0.58464986 0.92064974   
 Week 0.003129195 0.01251724 0.02190529   



314 9 Serially Correlated Errors

 Correlation structure:   
  lower est. upper   
 Phi 0.2867453 0.5503593 0.7364955   

 Residual standard error:   
  lower est. upper   
 0.2113312 0.2740294 0.3553291   

 Figure  9.7  shows a plot of the autocorrelation function of the generalized least 
squares (GLS) residuals from model (9.2) with AR(1) errors.    We see from Figure 
 9.7  that the lag 1 autocorrelation of just under 0.6 is highly statistically significant 
for the GLS residuals. This is not surprising when one considers that these residuals 
correspond to a model where we assumed the errors to be AR(1).  The high positive 

autocorrelation in the GLS residuals can produce nonrandom patterns in diagnos-

tic plots based on these residuals even when the fitted model is correct.  Instead, we 
will transform model (9.2) with AR(1) errors into a related model with uncorrelated 
errors so that we can use diagnostic plots based on least squares residuals.   

  Figure 9.7    Autocorrelation function of the GLS residuals from model (9.2)       
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  9.2.2  Transforming a Model with AR(1) Errors into a Model 

with iid Errors 

 We wish to transform the regression model 

 0 1 0 1 1t t t t t t
Y x e x eb b b b r u−= + + = + + +      

with AR(1) errors  e  
 t 
  into a related model with uncorrelated errors so that we can 

 use least squares for diagnostics . Writing this last equation for   Y
t – 1

   gives 

   1 0 1 1 1t t t
Y x eb b− − −= + +     

 Multiplying this last equation by   r   gives 

   1 0 1 1 1t t t
Y x er rb rb r− − −= + +     

 Subtracting the second equation from the first gives 

   ( )1 0 1 0 1 1 1t t t t t t
Y Y x e x er b b rb rb r− − −− = + + − + +     

 Recall that 

   1t t t
e er u−= +

    
 So, 

   

( )
( ) ( )

1 0 1 1 0 1 1 1

0 1 11

t t t t t t t

t t t

Y Y x e x e

x x

r b b r u rb rb r

r b b r u

− − − −

−

− = + + + − + +

= − + − +
    

 Define, what is commonly referred to as the Cochrane-Orcutt transformation 
(Cochrane and Orcutt, 1949), 

 
r r r − −= − = − = − =* * *

1 2 1 1, and 1 for 2,...,
t t t t t t t

Y Y Y x x x x t n       

 then the last model equation can be rewritten as 

 
* * *

0 1 1 2 t 2, ,
t t t

Y x x t nb b u= + + = …     (9.3)  

 Since the last equation is only valid for   t = 2,...,n  , we still need to deal with the 
first observation  Y  

1
 . The first observation in the regression model is given by 

   1 0 1 1 1Y x eb b= + +     
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 with error variance  

     

2
2

1 2
Var( )

1
v

e
e

s
s

r
= =

−

 Multiplying each term in the equation for  Y  
1
  by   − 21 r   gives 

2 2 2 2
1 0 1 1 11 1 1 1Y x er r b r b r− = − + − + −      

 Define what is commonly referred to as the Prais-Winsten transformation (Prais 
and Winsten, 1954), 

  
* 2 * 2 * 2 * 2

1 1 12 1 11 1 11 , 1 , 1 and 1Y Y x x x e er r r r= − = − = − = −    

 Then the model equation for  Y  
1
  can be rewritten as

   * * * *
1 0 11 1 12 1Y x x eb b= + +       (9.4)

 where   = −* 2 2 2
1Var( ) (1 ) =

e v
e r s s    matching the variance of the error term in (9.3). 

We shall see that *
1Y     is generally a point of high leverage when we use least squares 

to calculate generalized least squares estimates. 
 If we multiply each term in (9.3) and (9.4) by   

21 r−   then we find that we can 
equivalently define 

( )* * 2
1 1 1, 1 2, ,

t t t
Y Y Y Y Y t nr r−= = − − = …      

 In the examples in this chapter we shall use this version rather than (9.3) and (9.4).  

  9.2.3 A General Approach to Transforming GLS into LS 

 We next seek a general method for transforming a GLS model into a LS model. 
Consider the linear model 

     = +bY X e    (9.5)

 where the errors are assumed to have mean 0 and variance–covariance matrix   S   . 
Earlier we found that the generalized least squares estimator of S      is given by 

− − −= Σ Σ1 1 1
GLS

ˆ ( )b ¢ ¢X XC U     

 where   S    is a symmetric   (n´  n) matrix with ( i ,  j ) element equal to Cov( e  
 i 
 , e  

 j 
 ). 

 Since   S   is a symmetric positive-definite matrix it can be written as 

  
= ′∑ SS
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where  S  is a lower triangular matrix  1    with positive diagonal entries. This result is 
commonly referred to as the Cholesky decomposition of   S  . Roughly speaking,  S  
can be thought of as the “square root” of   S  . Multiplying each side of (9.5) by  S  –1 , 
the inverse of  S , gives 

  b− − −= +1 1 1
S S SY X e    

 Utilizing the result that   ( ) ( ) 11
S S

−− ′ = ′   ,

  ( ) ( )( ) ( ) ( )−− − − − − −′ ′= = = =′ ′∑ 11 1 1 1 1 1Var a ,V rS S S S S S S S Se e I    

 the identity matrix. Thus, pre-multiplying each term in equation (9.5) by  S  –1 , the 
inverse of  S , produces a linear model with uncorrelated errors. In other words, let 

  − − −= = =* 1 * 1 * 1, ,S S SY Y X X e e    

 then,

     * * *b= +Y X e     (9.6)

 provides a linear model with uncorrelated errors from which we can obtain the GLS 
estimate of   b   using least squares. Let  *

LSb̂     denote the least squares estimate of   b   for 
model (9.6), which is a generalization of (9.3) and (9.4). We next show that it equals 
the GLS estimator of b     for model (9.5). Utilizing the result that     ( )AB B A′ = ′ ′

  

( ) ( ) ( ) ( )

( ) ( )

1

* * * 1 * * 1 1 1 1
LS

1

1 1 1 1

11 1

GLS

ˆ ( )

ˆ

S S S S

S S S S

b

b

−
− − − − −

−
− − − −

−− −

′ ′′ ′

′ ′′ ′

′ ′

⎛ ⎞
= = ⎜ ⎟⎝ ⎠

⎛ ⎞
= ⎜ ⎟⎝ ⎠

⎛ ⎞
= Χ =⎜ ⎟⎝ ⎠∑ ∑

X X X Y X X X X

X X X Y

X X Y

   

 noting   ( ) ( ) ( )1 11 1 1 1
SS S S S S

− −− − − −′∑ = = =′ ′   , since   ( ) ( )1 1
A A

− − ′=′    

 However, Paige (1979) points out that using (9.6) to calculate the GLS estimates 
in (9.5) can be numerically unstable and sometimes even fail completely. 

  Estimating the price elasticity of a food product (cont.)  

 Given below is the output from R associated with fitting model (9.2) assuming that 
the errors are AR(1) using least squares based on the transformed versions of the 
response and predictor variables in (9.6). 

  1  A lower triangular matrix is a matrix where all the entries above the diagonal are zero. 
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  Output from R 

   Call:lm(formula = ystar ~ xstar - 1)   
     Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 xstar(Intercept) 4.67566 0.23838 19.614 < 2e-16 ***   
 xstarlog(Price) -4.32741 0.56256 -7.692 6.44e-10 ***   
 xstarPromotion 0.58464 0.16711 3.499 0.00102 **   

 xstarWeek 0.01252 0.00467 2.681 0.01004 *   

 Comparing the output above with that on a previous page, we see that the estimated 
regression coefficients are the same as are the standard errors and  t -values. 

 Figure  9.8  shows plots of the transformed variables from model (9.6). The point 
corresponding to Week 1 is highlighted in each plot. It is clearly a very highly influ-
ential point in determining the intercept. In view of (9.4) this is to be expected.  

 We next look at diagnostics based on the least squares residuals from (9.6). 
Figure  9.9  shows a plot of the autocorrelation function of the standardized least 
squares residuals from model (9.6). None of the autocorrelations in Figure  9.9  are 
statistically significant indicating that an AR(1) process provides a valid model for 
the errors in model (9.2).  

 Figure  9.10  contains diagnostic plots of the standardized LS residuals from 
model (9.6) plotted against each predictor in its  x * mode. Each of the plots appear 
to be random, indicating that model (9.2) with AR(1) errors is a valid model for the 
data. However, two outliers (corresponding to weeks 30 and 38) are evident in each 
of these plots. These weeks were investigated and the following was found:

  Figure 9.8    Plots of the transformed variables from model (9.6)       
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  Figure 9.9    Autocorrelation function of the standardized residuals from model (9.6)       
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  •  In week 30 another brand ran a promotion along with a price cut and captured a 
larger than normal share of sales, thus reducing the sales of Brand 1  

 •  In week 38, Brand 1 ran a promotion while none of the brands did, leading to 
higher sales than expected for Brand 1.     

 Thus, it seems that the model could be improved by including the prices and pro-
motions of the other brands. 

 Figure  9.11  contains the diagnostic plots produced by R for the least squares fit 
to model (9.6). A number of points of high leverage are evident from the bottom 
right-hand plot in Figure  9.11 . Week 38 is a “bad” leverage point and hence it is 
especially noteworthy. Otherwise the plots in Figure  9.10  provide further support 
for the assertion that (9.6) is a valid model for the data.     

  9.3 Case Study  

 We conclude this topic, by considering a case study using data from Tryfos (1998, 
p. 162) which demonstrates the hazards associated with ignoring autocorrelation in 
fitting and when examining model diagnostics. According to Tryfos (1998), the savings 
and loan associations in the Bay Area of San Francisco had an almost monopolistic 
position in the market for residential real estate loans during the 1990s. Chartered 



−0.5 −0.3 −0.1

−3

−1

1

2

3

−3

−1

1

2

3

−3

−1

1

2

3

−3

−1

1

2

3

log(Price)*

S
ta

n
d
a
rd

iz
e
d
 L

S
 R

e
s
id

u
a
ls

0 5 10 15 20 25

Week*

S
ta

n
d

a
rd

iz
e

d
 L

S
 R

e
s
id

u
a

ls

30

38

−0.5 0.0 0.5 1.0

Promotion*

S
ta

n
d
a
rd

iz
e
d
 L

S
 R

e
s
id

u
a
ls

3 4 5 6

Fitted Values*

S
ta

n
d

a
rd

iz
e

d
 L

S
 R

e
s
id

u
a

ls

  Figure 9.10    Plots of standardized LS residuals from model (9.6)       

  Figure 9.11    Diagnostic plots for model (9.6)       
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banks had a small portion of the market, and savings and loan associations located 
outside the region were prevented from making loans in the Bay Area. Interest centers 
on developing a regression model to predict interest rates ( Y ) from  x  

1
 , the amount of 

loans closed (in millions of dollars) and  x  
2
 , the vacancy index, since both predictors 

measure different aspects of demand for housing. Data from the Bay Area are available 
on each of these variables over a consecutive 19-month period in the 1990s. The data 
can be found on the course web site in the file BayArea.txt. 

 The scatter plots of the data given in Figure  9.12  reveal a striking nonlinear pat-
tern among the predictors.  

  Ignoring the autocorrelation effect  

 In order to demonstrate the effect of ignoring autocorrelation, we shall first fit a 
model without including it. Thus, we shall consider the model  

  Figure 9.12    Scatter plot matrix of the interest rate data       
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     = + + +0 1 2InterestRate LoansClosed VacancyIndex
t t t

eb b b     (9.7)

 We begin somewhat naively by assuming the errors are uncorrelated. Figure 
 9.13  contains diagnostic plots of the standardized residuals from least squares for 
model (9.7).  

 The top left and the bottom left plot in Figure  9.13  are highly nonrandom with an 
obvious quadratic pattern. The quadratic pattern could be due to the nonlinearity 
among the predictors and/or the obvious autocorrelation among the standardized 
residuals. 

  Figure 9.13    Plots of standardized residuals from the LS fit of model (9.7)       

20 40 60 80 100

Loans Closed

−1.5

−0.5

0.5

1.5

−1.5

−0.5

−0.5

0.0

0.5

1.0

0.5

1.5

−1.5

−0.5

0.5

1.5

S
ta

n
d
a
rd

iz
e
d
 R

e
s
id

u
a
ls

2.0 2.4 2.8 3.2

Vacancy Index

S
ta

n
d
a
rd

iz
e
d
 R

e
s
id

u
a
ls

6.2 6.4 6.6 6.8 7.0

Fitted Values

S
ta

n
d
a
rd

iz
e
d
 R

e
s
id

u
a
ls

0 2 4 6 8 10 12

Lag

A
C

F

Standardized LS Residuals

  Modelling the autocorrelation effect as AR(1)  

 We next fit model (9.7) assuming the errors are AR(1). Given below is the output 
from R    
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  Output from R   

 Generalized least squares fit by maximum likelihood   

 Model: InterestRate ~ LoansClosed + VacancyIndex   
 Data: BayArea   
  AIC BIC logLik   
  -35.30833 -30.58613 22.65416   

 Correlation Structure: AR(1)   
 Formula: ~Month   
 Parameter estimate(s):   
  Phi   
  0.9572093   

 Coefficients:   
  Value Std. Error t-value p-value   
 (Intercept) 7.122990 0.4182065 17.032232 0.0000   
 LoansClosed -0.003432 0.0011940 -2.874452 0.0110   
 VacancyIndex -0.076340 0.1307842 -0.583710 0.5676   

 Residual standard error: 0.2377426   
 Degrees of freedom: 19 total; 16 residual   

 Approximate 95% confidence intervals   

 Coefficients:   
  lower est. upper   
 (Intercept) 6.236431638 7.122989795 8.0095479516   
 LoansClosed -0.005963412 -0.003432182  -0.0009009516   
 VacancyIndex -0.353590009 -0.076339971 0.2009100658   

 Correlation structure:   
  lower est. upper   
  Phi 0.5282504 0.9572093 0.9969078   

 Residual standard error:   
  lower est. upper   
 0.06867346 0.23774259 0.82304773   

 Given below is the output from R associated with fitting model (9.7) assuming 
that the errors are AR(1) using least squares based on the transformed versions of 
the response and predictor variables in (9.6). Notice that the results match those 
in the previous R output.   

 Output from R   

 Call:   
 lm(formula = ystar ~ xstar - 1)   
 
Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 xstar(Intercept) 7.122990 0.418207 17.032 1.12e-11 ***   
 xstarLoansClosed -0.003432 0.001194 -2.874 0.011 *   
 xstarVacancyIndex -0.076340 0.130784 -0.584 0.568   

 Figure  9.14  shows plots of the transformed variables from model (9.7). The 
point corresponding to Week 1 is highlighted in each plot. It is clearly a very highly 
influential point, which is to be expected in view of (9.4).        
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 Figure  9.15  shows diagnostic plots based on the least squares residuals from (9.6). 
None of the autocorrelations in the top left plot are statistically significant indicating 
that an AR(1) process provides a valid model for the errors in model (9.7).        

 The other plots in Figure  9.15  show standardized LS residuals from model (9.7) 
plotted against each predictor in its  x * mode. Each of the plots appear to be random, 
indicating that model (9.7) with AR(1) errors is a valid model for the data. Month 
1 again shows up as a highly influential point. 

 Comparing the top right-hand plot in Figure  9.15  with the top left-hand plot in 
Figure  9.13  we see that the quadratic pattern has disappeared once we have used gen-
eralized least squares to account for the autocorrelated errors. 

 It is instructive to repeat the analyses shown above after removing the predictor 
 x  

2
 , the vacancy index. The quadratic pattern in the plot of standardized residuals 

against LoansClosed remains when naively fitting the model which assumes that 
the errors are independent. This shows that the quadratic pattern is due to the obvi-
ous autocorrelation among the standardized residuals and not due to the nonlinear-
ity among the predictors. 

 This case study clearly shows ignoring autocorrelation can produce misleading 
model diagnostics. It demonstrates the difficulty inherent in separating the effects 
of autocorrelation in the errors from misspecification of the conditional mean of  Y  
given the predictors. On the other hand, the case study illustrates the benefit of 
using least squares diagnostics based on  Y * and  X *.    

 Figure 9.14    Plots of the transformed variables from model (9.7)  
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  9.4 Exercises  

    1.    Senior management at the Australian Film Commission (AFC) has sought your 
help with the task of developing a model to predict yearly gross box office receipts 
from movies screened in Australia. Such data are publicly available for the period 
from 1976 to 2007 from the AFC’s web site (  www.afc.gov.au    ). The data are given 
in Table  9.2  and they can be found on the book web site in the file boxoffice.txt.         
 Interest centers on predicting gross box office results for 1 year beyond the latest 
observation, that is, predicting the 2008 result. In addition, there is interest in 
estimating the extent of any trend and autocorrelation in the data. A preliminary 
analysis of the data has been undertaken by a staffer at the AFC and these results 
appear below. In this analysis the variable Year was replaced by the number of 
years since 1975, which we shall denote as YearsS1975 (i.e., YearsS1975 = Year 
– 1975). 

 The first model fit to the data by the staffer was 

   0 1GrossBoxOffice YearsS1975 eb b= + +
   (9.8)   

 Figure 9.15    Plots of standardized LS residuals from model (9.6)  
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 Figure  9.16  shows plots associated with the least squares fit of model (9.8) that 
were produced by the staffer.          The staffer noted that a number of statistically 
significant autocorrelations in the standardized residuals as well as the existence 
of an obvious roller coaster pattern in the plot of standardized residuals against 

 Table 9.2    Australian gross box office results  

 Year  Gross box office ($M)  Year  Gross box office ($M) 

 1976   95.3  1992  334.3 
 1977   86.4  1993  388.7 
 1978  119.4  1994  476.4 
 1979  124.4  1995  501.4 
 1980  154.2  1996  536.8 
 1981  174.3  1997  583.9 
 1982  210.0  1998  629.3 
 1983  208.0  1999  704.1 
 1984  156.0  2000  689.5 
 1985  160.6  2001  812.4 
 1986  188.6  2002  844.8 
 1987  182.1  2003  865.8 
 1988  223.8  2004  907.2 
 1989  257.6  2005  817.5 
 1990  284.6  2006  866.6 
 1991  325.0  2007  895.4 

 Figure 9.16    Plots associated with the LS fit of model (9.8)  
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YearsS1975. As such, the staffer decided to fit model (9.8) assuming that the 
errors are AR(1). Given below is the output from R.    

  Output from R   

 Generalized least squares fit by maximum likelihood   
 Model: GrossBoxOffice ~ YearsS1975   
 Data: boxoffice   
  AIC BIC logLik   
  330.3893 336.2522 -161.1947   

 Correlation Structure: AR(1)   
 Formula: ~YearsS1975   
 Parameter estimate(s):   
  Phi   
 0.8782065   

 Coefficients:   
  Value Std. Error t-value p-value   
 (Intercept) 4.514082 72.74393 0.062054 0.9509   
 YearsS1975 27.075395 3.44766 7.853259 0.0000   

 Correlation:   
  (Intr)   
 YearsS1975 -0.782   

 Residual standard error: 76.16492   
 Degrees of freedom: 32 total; 30 residual   

 Given below is the output from R associated with fitting model (9.8) assuming 
that the errors are AR(1) using least squares based on the transformed versions 
of the response and predictor variables in (9.6). The staffer was delighted that 
the results match those in the previous R output.

    Output from R   

 Call:   
 lm(formula = ystar ~ xstar - 1)   

 Coefficients:   
  Estimate Std. Error t value  Pr(>|t|)   
 xstar(Intercept) 4.514 72.744 0.062 0.95   
 xstarYearS1975 27.075 3.448 7.853 9.17e-09 ***   

 Figure  9.17  shows diagnostic plots based on the least squares residuals from 
(9.6). The staffer is relieved that none of the autocorrelations in the right-hand 
plot are statistically significant indicating that an AR(1) process provides a 
valid model for the errors in model (9.8). However, the staffer is concerned 
about the distinct nonrandom pattern in the left-hand plot of Figure  9.17 . The 
dashed line is from a cubic LS fit which is statistically significant ( p -value = 
0.027). At this stage, the staffer is confused about what to do next and has 
sought your assistance.
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    (a)    Comment on the analysis performed by the staffer.  
    (b)    Obtain a final model for predicting GrossBoxOffice from YearsS1975. 

Ensure that you produce diagnostic plots to justify your choice of model. 
Describe any weaknesses in your model.  

    (c)    Use your model from (b) to predict GrossBoxOffice in 2008.  
    (d)    Use your model from (b) to identify any outliers. In particular, decide 

whether the year 2000 is an outlier. There is some controversy about 
the year 2000. In one camp are those that say that fewer people went to the 
movies in Australia in 2000 due to the Olympics being held in Sydney. In 
the other camp are those that point to the fact that a 10% Goods and 
Services Tax (GST) was introduced in July 2000 thus producing an 
increase in box office receipts.  

   2.    This problem is based on an exercise from Abraham  and Ledolter (2006, 
pp. 335–337) which focuses on monthly sales from a bookstore in the city 
of Vienna, Austria. The available data consisted of 93 consecutive monthly 
observations on the following variables:            

 Sales = Sales (in hundreds of dollars) 
 Advert = Advertising spend in the current month 
 Lag1Advert = Advertising spend in the previous month 
 Time = Time in months 
 Month_ i  = Dummy variable which is 1 for month  i  and 0 otherwise 
 ( i  = 2, 3, …, 12) 

 Figure 9.17    Plots of standardized LS residuals from model (9.6)  
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 The data can be found on the book website in the file bookstore.txt.

    (a)    Follow the advice of Abraham and Ledolter (2006, pp. 336–337) and first 
build a model for Sales ignoring the effects due to Advert and Lag1Advert. 
Ensure that you produce diagnostic plots to justify your choice of model. 
Describe any weaknesses in your model.  

    (b)    Add the effects due to Advert and Lag1Advert to the model you have 
developed in (a). Last month’s advertising (Lag1Advert) is thought to have 
an impact on the current month’s sales. Obtain a final model for predicting 
Sales. Ensure that you produce diagnostic plots to justify your choice of 
model. Describe any weaknesses in your model.  

   3.    This problem is based on a case involving real data from Tryfos (1998, pp. 467–469). 
According to Tryfos: 

 To the sales manager of Carlsen’s Brewery, a formal model to explain and predict beer sales 
seemed worth a try.…. Carlsen’s Brewery is one of the major breweries in Canada, with sales 
in all parts of the country, but the study itself was to be confined to one metropolitan area. In 
discussing this assignment, the manager pointed out that weather conditions obviously are 
responsible for most of the short-run variation in beer consumption. “When it is hot”, the 
manager said, “people drink more – it’s that simple.” This was also the reason for confining 
the study to one area; since weather conditions vary so much across the country, there was 
no point in developing a single, countrywide model for beer sales. It was the manager’s 
opinion that a number of models should be developed -–one for each major selling area.       

 The available data consisted of 19 consecutive quarterly observations on the 
following variables: 

 Sales = Quarterly beer sales (in tons) 
 Temp = Average quarterly temperature (in degrees F) 
 Sun = Quarterly total hours of sunlight 
 Q2 = Dummy variable which is 1 for Quarter 2 and 0 otherwise 
 Q3 = Dummy variable which is 1 for Quarter 3 and 0 otherwise 
 Q4 = Dummy variable which is 1 for Quarter 4 and 0 otherwise. 
 The data can be found on the book web site in the file CarlsenQ.txt. 

 Develop a model which can be used to predict quarterly beer sales. Describe any 
weaknesses in your model. Write up the results in the form of a report that is to 
be given to the manager at Carlsen’s brewery.        



   Chapter 10   

  Mixed Models         

 In the previous chapter we looked at regression models for data collected over time. 
The data sets we studied in Chapter 9 typically involve a single relatively long 
series of data collected in time order. In this chapter, we shall further consider 
models for data collected over time. However, here the data typically consist of a 
number of relatively short series of data collected in time order (such data are 
commonly referred to as longitudinal data). For example, in the next section we 
shall consider a real example which involves four measurements in time order 
collected for each of 27 children (i.e., 16 males and 11 females). 

 We begin by discussing the concept of fixed and random effects and how random 
effects induce a certain form of correlation on the overall error term in the corre-
sponding regression model. The term mixed models is used to describe models 
which have both fixed and random effects. We then show how to fit mixed models 
with more complex error structures. Finally, we demonstrate the benefits of trans-
forming mixed models into models with uncorrelated errors when it comes to 
examining model diagnostics. 

  10.1 Random Effects  

 Thus far in this book we have looked exclusively at regression models for what are 
known as fixed effects. The effects are fixed in the sense that the levels of each 
explanatory variable are themselves of specific interest. For example, in Chapter 1 we 
were interested in modeling the performance of the 19 NFL field goal kickers who 
made at least ten field goal attempts in each of the 2002, 2003, 2004, 2005 seasons 
and at the completion of games on Sunday, November 12 in the 2006 season. 

 On the other hand, in many studies involving random effects, subjects are selected 
at random from a large population. The subjects chosen are themselves not of spe-
cific interest. For example, if the study or experiment were repeated then different 
subjects would be used. We shall see in the context of this chapter that what is gener-
ally of interest in these situations is a comparison of outcomes within each subject 
over time as well as comparisons across subjects or groups of subjects. Throughout 
this section we shall consider the following real example involving random effects. 

S.J. Sheather, A Modern Approach to Regression with R, 331
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  Orthodontic growth data  

 Potthoff and Roy (1964) first reported a data set from a study undertaken at the 
Department of Orthodontics from the University of North Carolina Dental School. 
Investigators followed the growth of 27 children (16 males and 11 females). At ages 
8, 10, 12 and 14 investigators measured the distance (in millimeters) from the center 
of the pituitary to the pterygomaxillary fissure, two points that are easily identified on 
x-ray exposures of the side of the head. Interest centers on developing a model for 
these distances in terms of age and sex. The data are provided in the R-package, nlme. 
They can be found in Table  10.1  and on the book web site in the file Orthodont.txt.     

  Orthodontic growth data: Females  

 We shall begin by considering the data just for females. Figure  10.1  shows a plot of 
Distance against Age for each of the 11 females. Notice that the plots have been ordered 
from bottom left to top right in terms of increasing average value of Distance.  

 The model we first consider for subject  i  ( i  = 1, 2, …, 11) at Age  j  ( j  = 1, 2, 3, 4) 
is as follows:

   0 1Distance Age
ij j i ij

b eb b= + + +    (10.1) 

 Table 10.1    Orthodontic growth data in the form of Distance  

 Subject  Age = 8  Age = 10  Age = 12  Age = 14 

 M1  26  25  29  31 
 M2  21.5  22.5  23  26.5 
 M3  23  22.5  24  27.5 
 M4  25.5  27.5  26.5  27 
 M5  20  23.5  22.5  26 
 M6  24.5  25.5  27  28.5 
 M7  22  22  24.5  26.5 
 M8  24  21.5  24.5  25.5 
 M9  23  20.5  31  26 
 M10  27.5  28  31  31.5 
 M11  23  23  23.5  25 
 M12  21.5  23.5  24  28 
 M13  17  24.5  26  29.5 
 M14  22.5  25.5  25.5  26 
 M15  23  24.5  26  30 
 M16  22  21.5  23.5  25 
 F1  21  20  21.5  23 
 F2  2 1  21.5  24  25.5 
 F3  20.5  24  24.5  26 
 F4  23.5  24.5  25  26.5 
 F5  21.5  23  22.5  23.5 
 F6  20  21  21  22.5 
 F7  21.5  22.5  23  25 
 F8  23  23  23.5  24 
 F9  20  21  22  21.5 
 F10  16.5  19  19  19.5 
 F11  24.5  25  28  28 
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 where the random effect   b
i
    is assumed to follow a normal distribution with mean 0 

and variance   s 2
b
   (i.e.,   b

i 
~ N(0, s 2

b
)  ) independent of the error term  e  

 ij 
  which is iid 

  N(0,s 2
e
  ). Model (10.1) assumes that the intercepts differ randomly across the 11 

female subjects but that Distance increases linearly with Age at the same fixed rate 
across the 11 female subjects. Thus, in model (10.1) age is modeled as a fixed 
effect. Since model (10.1) contains both fixed and random effects, it is said to be a 
mixed model. 

 We next calculate the correlation between two distance measurements (at Age  j, 
k  such that   j ≠ k  ) for the same subject ( i ) based on model (10.1). We shall begin by 
calculating the relevant covariance and variance terms. Utilizing the independence 
between the random effect and random error terms assumed in model (10.1) gives

  
2

Cov(Distance ,Distance ) Cov( , )

Cov( , )

Var( )

ij ik i ij i ik

i i

i

b

b e b e

b b

b

s

= + +

=
=
=    

  Figure 10.1    Plot of Distance against Age for each female       
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 and

s s= + = +2 2Var(Distance ) Var( )
ij i ij b e

b e
  

Putting these last two expressions together gives the following expression for the 
correlation

   

s

s s
=

+

2

2 2
Corr(Distance ,Distance ) b

ij ik

b e
   

(10.2) 

 Thus, the random intercepts model (10.1) is equivalent to assuming that the correla-
tion between two distance measurements (at Age  j ,  k  such that   j ≠ k  ) for the same 
subject ( i ) is constant no matter what the difference between  j  and  k . In other words, 
a random intercepts model is equivalent to assuming a constant correlation within 
subjects over any chosen time interval. Such a correlation structure is also com-
monly referred to as compound symmetry. 

 In order to investigate whether the assumption of constant correlation inher-
ent in (10.1) is reasonable, we calculate the correlations between two distance 
measurements for the same female subject over each time interval. In what fol-
lows, we shall denote the distance measurements for females aged 8, 10, 12 and 
14 as DistFAge8, DistFAge10, DistFAge12, DistFAge14, respectively. The out-
put from R below gives the correlations between these four variables. Notice the 
similarity among the correlations away from the diagonal, which range from 
0.830 to 0.948. 

  Output from R: Correlations between female measurements  

  DistFAge8 DistFAge10 DistFAge12 DistFAge14   
  DistFAge8 1.000 0.830 0.862 0.841   
  DistFAge10 0.830 1.000 0.895 0.879   
  DistFAge12 0.862 0.895 1.000 0.948   
  DistFAge14 0.841 0.879 0.948 1.000   

 Figure  10.2  shows a scatter plot matrix of the distance measurements for females 
aged 8, 10, 12 and 14. The linear association in each plot in Figure  10.2  appears to 
be quite similar. Overall, it therefore seems that the assumption that correlations are 
constant across Age is a reasonable one for females.  

  10.1.1  Maximum Likelihood and Restricted Maximum 

Likelihood 

 The random effects model in (10.1) can be rewritten as follows:

  0 1Distance Age
ij j ij

b b e= + +
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 where   ij i ij
b ee = +   . In general matrix notation, this is

   b e= +Y X    (10.3) 

 where in this example

  

1,1 1

1,4 4

111,1

411,4

1

1

      

1

1

y x

y x

xy

xy
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  Figure 10.2    Scatter plot matrix of the Distance measurements for female subjects       
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 with , =Distance , =Age , 1,...,11, 1,...,4.
i j ij j j

Y x i j= =      We shall assume that

~ ( , )Ne ∑0      

 where in this example   Σ   is the following symmetric matrix:

  

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2
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0 0 0 0 0
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0 0 0 0 0

b e b b b
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 Estimates of   b   and   Σ   can be found using maximum likelihood. However, it is well known 
that maximum likelihood (ML) estimate of   Σ   is biased, considerably so in small to mod-
erate sample sizes. Because of this bias, restricted maximum likelihood (REML) is the 
widely recommended approach for estimating   Σ   . REML is also referred to as residual 
maximum likelihood. REML is based on the notion of separating the likelihood used for 
estimating   Σ   from that used for estimating   b  . This can be achieved in a number of ways. 
One way is to effectively assume a locally uniform prior distribution of the fixed effects 
  b   and integrate them out of the likelihood (Pinheiro and Bates, 2000, pp. 75–76). An 
implication of this separation is that the resulting  REML log-likelihoods for models with 

different fixed effects are not comparable . 
 However, for models with the same fixed effects, the REML log-likelihoods can 

be used to compare two nested models for   Σ  .  A likelihood ratio test for two nested 

covariance models with the same fixed effects is based on comparing twice the dif-

ference in the two maximized REML log-likelihoods to a chi-squared distribution 

with degrees of freedom equal to the difference between the number of variance-

covariance parameters in the full and reduced models . 
 It can be shown that the log-likelihood function for model (10.3) is given by

  

( )
( ) ( ) ( )

2 2

1

log ( , , | )

1 1
log(2 ) log(det )

2 2 2

b e
L

n

b s s

p b ¢ b−= − − ∑ − − ∑ −

Y

Y X Y X
   

 (see e.g., Ruppert, Wand and Carroll, 2003, p. 100). The maximum likelihood (ML) 
estimates of   b   and Σ     can be obtained by maximizing this function. Alternatively, 
given the estimated variance–covariance matrix of the error term   Σ̂   obtained from 
REML, minimizing the third term in the log-likelihood gives   b̂

GLS
   the generalized 

least squares (GLS) estimator of   b  . It can be shown that

  
1 1 1

GLS
ˆ ˆˆ ( )b ¢ − − −= ∑ ∑X X X Y¢

   

  For models with the same random effects and hence the same    Σ    which have been 

estimated by ML, the ML log-likelihoods can be used to produce a likelihood ratio test 
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to compare two nested models for fixed effects .  This test is based on comparing twice 

the difference in the two maximized ML log-likelihoods to a chi-squared distribution 

with degrees of freedom equal to the difference between the number of fixed effects 

parameters in the full and reduced models .  Given that REML log-likelihoods for dif-

ferent fixed effects are not comparable, REML log-likelihoods should  not  be used to 

produce a likelihood ratio test to compare two nested models for fixed effects.  
 Given below is the output from R associated with fitting model (10.1) to the data 

on females using REML. The error variance is estimated to be   ŝ 2
e
 = 0.78002 = 0.608   

while the variance due to the random intercept is estimated to be   ŝ 2
b
 = 2.06852 = 

4.279  . Utilizing (10.2) we find that the correlation of two measurements within the 
same female subject is estimated to be

  

Corr

2

2 2

ˆ 4.279ˆ (Distance ,Distance ) 0.88
ˆ ˆ 4.279 0.608

b

ij ik

b e

s

s s
= = =

++
   

 This result is in line with the sample correlations reported earlier. 

  Output from R: REML fit of model (10.1) for females  

 Linear mixed-effects model fit by REML   
 Data: FOrthodont   
    AIC     BIC   logLik   
 149.2183 156.169 -70.60916   

 Random effects:   
 Formula: ~1 | Subject   
     (Intercept)    Residual   
 StdDev:  2.06847 0.7800331   

 Fixed effects: distance ~ age   
           Value Std. Error DF    t-value p-value   
 (Intercept) 17.372727  0.8587419 32 20.230440         0   
 age         0.479545  0.0525898 32  9.118598         0   
 Correlation:   
    (Intr)   
 age -0.674   

 Number of Observations: 44   
 Number of Groups: 11   

 Figure  10.3  contains plots of Distance against Age for each female with the 
straight-line fits from model (10.1) included. Once again these plots have been ordered 
from bottom left to top right in terms of increasing average value of Distance. We shall 
see in Table  10.2  that the estimated random intercept is higher than one may initially 
expect for subject F10 and lower than one may initially expect for subject F11. We 
shall also see that this is due to so called “shrinkage” associated with random effects.      

 For comparison purposes, we also fit the following model for subject  i  ( i  = 1, 2, 
…, 11) at Age  j  ( j  = 1, 2, 3, 4):

   1Distance Age
ij i j ij

ea b= + +    (10.4) 
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 Table 10.2    Random and fixed intercepts for 
each female and their difference  

 Subject 
 Random 
intercept 

 Fixed 
intercept 

 Random - 
fixed 

 F11  20.972  21.100  –0.128 
 F04  19.524  19.600  –0.076 
 F03  18.437  18.475  –0.038 
 F08  18.075  18.100  –0.025 
 F07  17.713  17.725  –0.012 
 F02  17.713  17.725  –0.012 
 F05  17.351  17.350   0.001 
 F01  16.144  16.100   0.044 
 F09  15.902  15.850   0.052 
 F06  15.902  15.850   0.052 
 F10  13.367  13.225   0.142 

  Figure 10.3    Plots of Distance against Age for females with fits from model (10.1)       

D
is

ta
n
c
e
 f

ro
m

 P
it
u
it
a
ry

 t
o
 P

te
ry

g
o
m

a
x
ill

a
ry

 F
is

s
u

re
 (

m
m

)

Fitted Values (mm)

16
18
20
22
24
26
28

18 22 26

F10 F09

18 22 26

F06

F01 F05

16
18
20
22
24
26
28

F07
16
18
20
22
24
26
28

F02 F08 F03

F04

18 22 26

16
18
20
22
24
26
28

F11

 where the fixed effect   a
i
   allows for a different intercept for each subject. Table  10.2  

gives the values of the estimates of   a
i
  , that is, estimates of the fixed intercepts in 

model (10.4) along with the estimated random intercept for each subject from 
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model (10.1), that is estimates of   b
0
 + b

i
  . Also included in Table  10.2  is the differ-

ence between the random and fixed intercepts. 
 Inspection of Table  10.2  reveals that the random intercepts are smaller (larger) 

than the fixed intercepts when they are associated with subjects with larger (smaller) 
values of average distance than the overall average value of distance. In other 
words, there is “shrinkage” in the random intercepts towards the mean. A number 
of authors refer to this as “borrowing strength” from the mean. 

 It can be shown that there is more “shrinkage” when  n  
 i 
 , the number of observa-

tions on the  i th subject is small. This is based on the notion that less weight should 
be given to the  i th individual’s average response when it is more variable. In addi-
tion, it can be shown that there is more “shrinkage” when   s 2

b
   is relatively small and 

  s 2
e
   is relatively large (see for example Frees, 2004, p. 128). This is based on the 

notion that less weight should be given to the  i th individual’s average response when 
there is little variability between subjects but high variability within subjects. 

 In summary, we have found that the correlation between two distance measure-
ments for female subjects is both relatively constant across different time intervals 
and high (estimated from model (10.1) to be 0.88). In addition, the fixed effect due 
to Age in model (10.1) is highly statistically significant. 

  Orthodontic growth data: Males  

 We next consider the data just for males. Figure  10.4  shows a plot of Distance 
against Age for each of the 16 males. Notice that the plots have been ordered from 
bottom left to top right in terms of increasing average value of Distance.  

  Figure 10.4    Plot of Distance against Age for each male subject       
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 We again consider model (10.1) this time for subject  i  ( i  = 1, 2, …, 16) at Age  j  
( j  = 1, 2, 3, 4). In order to investigate whether the assumption of constant correlation 
inherent in (10.1) is reasonable for males, we calculate the correlations between two 
distance measurements for the same male subject over each time interval. In what 
follows, we shall denote the distance measurements for males aged 8, 10, 12 and 14 
as DistMAge8, DistMAge10, DistMAge12, DistMAge14, respectively. The output 
from R below gives the correlations between these four variables. Notice the similarity 
among the correlations away from the diagonal, which range from 0.315 to 0.631. 

  Output from R: Correlations between male measurements  

  DistMAge8 DistMAge10 DistMAge12 DistMAge14   
 DistMAge8 1.000 0.437 0.558 0.315   
 DistMAge10 0.437 1.000 0.387 0.631   

  Figure 10.5    Scatter plot matrix of the Distance measurements for male subjects       
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 DistMAge12 0.558 0.387 1.000 0.586   
 DistMAge14 0.315 0.631 0.586 1.000   

 Figure  10.5  shows a scatter plot matrix of the distance measurements for males 
aged 8, 10, 12 and 14. The linear association in each plot in Figure  10.5  appears to 
be quite similar but much weaker than that in the corresponding plot for females, 
namely, Figure  10.2 . In addition, there are one or two points in some of the plots that 
are isolated from the bulk of the points. These correspond to subjects M09 and M13 
and should in theory be investigated. However, overall, it seems that the assumption 
that correlations are constant across Age is also a reasonable one for males.  

 Given below is the output from R associated with fitting model (10.1) to the data 
on males using REML. The error variance is estimated to be   ŝ 2

e
 = 1.67822 = 2.816  

while the variance due to the random intercept is estimated to be   ŝ 2
b
 = 1.6252 = 

2.641  . Utilizing (10.2) we find that the correlation of two measurements within the 
same male subject is estimated to be

  

Corr

2

2 2

ˆ 2.641ˆ (Distance ,Distance ) 0.48
ˆ ˆ 2.641 2.816

b

ij ik

b e

s

s s
= = =

++
   

 This result is in line with the sample correlations reported earlier. 

  Output from R: REML fit of model (10.1) for males  

 Linear mixed-effects model fit by REML   
 Data: MOrthodont   
    AIC    BIC     logLik   
 281.4480 289.9566 -136.7240   
 Random effects:   
 Formula: ~1 | Subject   
      (Intercept)   Residual   
 StdDev:   1.625019  1.67822   

 Fixed effects: distance ~ age   
                Value Std. Error DF    t-value p-value   
  (Intercept) 16.340625  1.1287202 47 14.477126      0   
 age       0.784375  0.0938154 47   8.360838      0   
 Correlation:   
        (Intr)   
 age -0.914   

 Number of Observations: 64   
 Number of Groups: 16   

 Figure  10.6  contains plots of Distance against Age for each male with the 
straight-line fits from model (10.1) included. Once again these plots have been 
ordered from bottom left to top right in terms of increasing average value of 
Distance. Careful inspection of Figure  10.6  reveals that the estimated random inter-
cept is lower than one may initially expect for subject M10, with at least three of 
the four points lying above the fitted line. This is due to “shrinkage” associated with 
random effects.  
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 In summary, we have found that the correlation between two distance measure-
ments for male subjects is both relatively constant across different time intervals 
and moderate (estimated from model (10.1) to be 0.48). In addition, the fixed effect 
due to Age in model (10.1) is also highly statistically significant for males. 

 Table  10.3  gives the estimates of the error standard deviation (  s
e
  ) and the ran-

dom effect standard deviation (  s
b
  ) for males and females we found earlier in this 

chapter. Comparing these estimates we see that while   ŝ 
b
   is similar across males and 

females,   ŝ 
e
   is more than twice as big for males as it is for females. Thus, in order 

to combine the separate models for males and females, we shall allow the error 
variance to differ with sex, while assuming the random effect variance is constant 
across sex. The combined model will readily allow us to answer the important ques-
tion about whether the growth rate differs across sex.     

  Orthodontic growth data: Males and females  

 The model we next consider for both male and female subjects  i  ( i  = 1, 2, …, 27) 
at Age  j  ( j  = 1, 2, 3, 4) is as follows:

  Figure 10.6    Plots of Distance against Age for males with fits from model (10.1)       
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   Sex
0 1 2 3Distance Age Sex Sex Age

ij j j i ij
b eb b b b= + + + × + +    (10.5) 

 where the random effect   b
i
   is assumed to follow a normal distribution with mean 0 

and variance   s  2
b
   independent of the error term   e

ij

Sex   which is iid   N(0, s 2
eSex

)  , where 
  s 2

eSex
   depends on Sex. 

 Given below is the output from R associated with fitting model (10.5) using 
REML. The error variances are estimated to be   ŝ 2

eMale
 = 1.66982 = 2.788   and 

  ŝ 2
eFemale

 = (0.4679 × 1.6698)2 = 0.610   while the variance due to the random 
intercept is estimated to be   ŝ 2

b
 = 1.84762 = 3.414  . Utilizing (10.2) we find that 

the correlation of two measurements within the same male and female subject 
are estimated to be

  

Corr

2

Male 2 2
Male

ˆ 3.414ˆ (Distance ,Distance ) 0.55
ˆ ˆ 3.414 2.788

b

ij ik

b e

s

s s
= = =

+ +
   

 and

  

Corr

2

Female 2 2
Female

ˆ 3.414ˆ (Distance ,Distance ) 0.85
ˆ ˆ 3.414 0.610

b

ij ik

b e

s

s s
= = =

+ +
  

Thus, allowing for the random effect variance to differ across sex has produced 
estimated correlations in line with those obtained from the separate models for 
males and females reported earlier. 

  Output from R: REML fit of model (10.5) for males and females  

 Linear mixed-effects model fit by REML   
  Data: Orthodont   
    AIC    BIC     logLik   
 429.2205 447.7312 -207.6102   

 Random effects:   
 Formula: ~1 | Subject   
          (Intercept) Residual   
 StdDev:  1.847570   1.669823   

 Variance function:   
 Structure: Different standard deviations per stratum   
 Formula: ~1 | Sex   
 Parameter estimates:   
    Male     Female   
 1.0000000 0.4678944   

 Table 10.3    Estimates of the random effect and error 
standard deviations  

  ŝ 
b

ŝ 
e

 Males  1.63  1.68 
 Females  2.07  0.78 
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 Fixed effects: distance ~ age * Sex   
            Value Std. Error  DF       t-value      p-value   
  (Intercept) 16.340625  1.1450945 79 14.270111 0.0000   
 age   0.784375 0.0933459 79 8.402883 0.0000   
 SexFemale 1.032102 1.4039842 25  0.735124 0.4691   
 age:SexFemale -0.304830 0.1071828  79 -2.844016  0.0057   

 Correlation:   
          (Intr)   age SexFml   
 age         -0.897   
 SexFemale     -0.816   0.731   
 age:SexFemale 0.781 -0.871 -0.840   

 Number of Observations: 108   
 Number of Groups: 27   

 The fixed effect due to the interaction between Sex and Age in model (10.5) is 
highly statistically significant ( p -value = 0.0057). The estimated coefficient of this 
interaction term is such that the growth rate of females is significantly less than that 
of males. 

 We next test whether allowing the error variance to differ across sex is really 
necessary by comparing the maximized REML likelihoods for model (10.5) and the 
following model with the same fixed effects but in which the error variance is con-
stant across Sex:

   0 1 2 3Distance Age Sex Sex Age
ij j j i ij

b eb b b b= + + + × + +    (10.6) 

 Given below is the output from R associated with fitting model (10.6) using REML. 
Notice that the estimates of the fixed effects match those obtained from model 
(10.5) while the standard errors of these estimates differ a little across the two 
models. 

  Output from R: REML fit of model (10.6) for males and females  

 Linear mixed-effects model fit by REML   
 Data: Orthodont   
    AIC       BIC      logLik   
 445.7572 461.6236 -216.8786   

 Random effects:   
 Formula: ~1 | Subject   
      (Intercept) Residual   
 StdDev:  1.816214 1.386382   

 Fixed effects: distance ~ age * Sex   
  Value Std. Error DF t-value p-value   
  (Intercept) 16.340625 0.9813122 79 16.651810 0.0000   
 age 0.784375 0.0775011 79 10.120823 0.0000   
 SexFemale  1.032102 1.5374208 25 0.671321 0.5082   
 age:SexFemale -0.304830 0.1214209 79 -2.510520  0.0141   



 Correlation:   
          (Intr)   age  SexFml   
 age         -0.869   
 SexFemale     -0.638   0.555   
 age:SexFemale 0.555 -0.638 -0.869   

 Number of Observations: 108   
 Number of Groups: 27   

 Given below is the output from R comparing the REML fits of models (10.5) 
and (10.6). The likelihood ratio test is highly statistically significant indicating that 
model (10.5) provides a significantly better model for the variance–covariance than 
does model (10.6). 

  Output from R: Comparing REML fits of models (10.5) and (10.6)  

  Model df AIC BIC logLik Test L.Ratio p-value   
 m10.6 1 6 445.7572 461.6236 -216.8786   
 m10.5 2 7 429.2205 447.7312 -207.6102 1 vs 2 18.53677 <.0001    

  10.1.2 Residuals in Mixed Models 

 In the previous section, we discussed how REML (ML)-based likelihood ratio tests 
can be used to test nested models for the covariance (fixed effects). However, such 
tests are of limited value when neither of the models being compared is a valid 
model for the fixed effects and the covariance. As such, it is clearly desirable to 
have a set of diagnostics which examine the validity of different aspects of the 
model under consideration. We begin this discussion by extending the concept of 
residuals to mixed models. 

 In models containing random effects, there are at least two types of residuals 
depending on whether we are considering the data in a conditional or unconditional 
sense. We shall see that this corresponds to whether we are focusing within subjects 
or at the population level. 

 Before we define these two types of residuals, we need to introduce some nota-
tion. To keep things as straightforward as possible we shall consider just a single 
fixed effect and a single random effect. The extension to more than one fixed effect 
and one random effect will be obvious. 

 Let  Y  
 ij 
  denote the outcome for subject  i  at fixed effect  x  

 j 
 . Let  b  

 i 
  denote the ran-

dom effect due to subject  i . We shall suppose that the following model is under 
consideration:

   0 1ij j i ij
Y x b eb b= + + +    (10.7) 

 where the random effect   b
i
   is assumed to follow a normal distribution with mean 0 

and variance   s   2
b
   (that is,   b

i
 ~ N(0, s 2

b
  )) independent of the error term  e  

 ij 
  which is iid 

  N(0, s 2
e
 ) . 

10.1 Random Effects 345



346 10 Mixed Models

 The  ij th  conditional (or within subjects) residual  is the difference between the 
observed value of  Y  

 ij 
  and its predicted value and hence it is given by

   C 0 1
ˆ ˆ ˆˆ

ij ij j i
e Y x bb b= − − −    (10.8) 

 The  ij th  marginal (or population) residual  is the difference between the observed 
value of  Y  

 ij 
  and its estimated mean and hence it is given by

   M 0 1
ˆ ˆˆ

ij ij j
e Y xb b= − −    (10.8) 

 In models without random effects, the two sets of residuals are the same since then 
the predicted value of  Y  

 ij 
  equals its estimated mean. 

 Some authors (e.g., Weiss, 2005, pp. 332–333) define a third residual called 
 empirical Bayes residuals  which are equal to the estimated random effects and 
hence given by

   B
ˆˆ

i i
e b=    (10.9) 

 The standard advice (e.g., Nobre and Singer, 2007, p. 3) for checking the validity 
of model for the fixed effects is that “plots of the elements of the vector of marginal 
residuals versus the explanatory variables in  X  may be employed to check the lin-
earity of  y  with respect to such variables with the same spirit as the usual residuals 
in standard (normal) linear models. A random behavior around zero is expected 
when the linear relationship holds”. 

 Furthermore, Nobre and Singer (2007) recommend that the conditional residuals 
be used to check the usual normality and constant variance assumptions placed on 
the  e  

 ij 
 . In addition, they recommend that the empirical Bayes residuals (i.e., the 

estimated random effects) be used to identify outlying subjects as well as assessing 
the normality of the random effects. 

 However, Weiss (2005, p. 332) and Fitzmaurice, Laird and Ware (2004, p. 238) 
draw attention to the fact that the marginal residuals are correlated due to the cor-
relation in the model. In particular, Fitzmaurice, Laird and Ware (2004, p. 238) 
point out that this correlation may produce “an apparent systematic trend in the 
scatter-plot of the (marginal) residuals against a selected covariate” even when the 
fixed effects have been modeled correctly. In addition, Weiss (2005, p. 332) also 
warns readers to be “careful” because the “estimation process introduces correla-
tion into the (conditional) residuals even when none exists in the  e  

 ij 
  (using the 

present notation).” 

  Orthodontic growth data: Males and females  

 We shall illustrate the uses and limitations of the three types of residuals (condi-
tional, marginal and empirical Bayes) using (10.5) and (10.6). We begin by consid-
ering empirical Bayes residuals. 

 Figure  10.7  shows a normal Q–Q plot of the empirical Bayes residuals (i.e., the 
estimated random effects   b̂

i
  ) for model (10.5). Estimated random effects in the plot 



below the lower or above the upper 2.5% normal critical value are identified as out-
liers. In theory, the results for these subjects (namely F10 and M10) should be inves-
tigated. Figure  10.7  also shows that there is some skewness in the random effects.   

 We next demonstrate the fact that the marginal and conditional residuals are cor-
related even when we believe we have fitted a valid model (in this case model 
(10.5)). In what follows we shall denote the marginal residuals for subjects at ages 
8, 10, 12 and 14 by MRAge8, MRAge10, MRAge12 and MRAge14, respectively 
and the corresponding conditional residuals by CRAge8, CRAge10, CRAge12 and 
CRAge14. 

 Given below is output from R which gives the correlations of marginal residuals 
over time. Away from the diagonal the correlations vary from 0.522 to 0.728. 

  Output from R: Correlations among marginal residuals  

  MRAge8 MRAge10 MRAge12 MRAge14   
 MRAge8 1.000 0.560 0.660 0.522   
 MRAge10 0.560 1.000 0.560 0.718   
 MRAge12 0.660 0.560 1.000 0.728   
 MRAge14 0.522 0.718 0.728 1.000   

 Figure  10.8  shows a scatter plot matrix of the marginal residuals. The high posi-
tive correlations just reported above are clearly apparent in these plots. 

 Given below is output from R which gives the correlations of conditional residu-
als over time. Away from the diagonal the correlations vary from –0.005 to –0.620. 

  Figure 10.7    Normal Q–Q plot of the estimated random effects from model (10.5)       
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  Output from R: Correlations among conditional residuals  

  CRAge8 CRAge10 CRAge12 CRAge14   
 CRAge8 1.000 -0.307 -0.120 -0.620   
 CRAge10 -0.307 1.000 -0.544 -0.005   
 CRAge12 -0.120 -0.544 1.000 -0.083   
 CRAge14 -0.620 -0.005 -0.083 1.000   

 Figure  10.9  shows a scatter plot matrix of the marginal residuals. The generally 
negative correlations just reported above are clearly apparent in these plots.  

 To demonstrate the potential shortcomings of using the conditional residuals to 
assess the constant variance assumptions placed on the  e  

 ij 
 , we shall examine plots 

of conditional residuals versus fitted values for models (10.6) and (10.5). These 
plots can be found in Figures  10.10  and  10.11 , respectively.   

  Figure 10.8    Scatter plot matrix of the marginal residuals from model (10.5)       
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 Recall that model (10.6) assumes that the error variability is constant across 
males and females. Figure  10.10  seems to provide a clear indication that this is not 
a reasonable assumption since the residuals from this model for males are more 
variable than those for the females. 

 On the other hand, model (10.5) allows for the variability of the errors to differ across 
males and females. Interestingly, Figure  10.11  is remarkably similar to Figure  10.10 , 
with the conditional residuals for males much more variable than those for the females. 
This example demonstrates that plots of conditional residuals versus fitted values can 
produce evidence of nonconstant error variance even when a model allowing for 
differing variances has been fit. In this example, standardizing the conditional residuals 
by estimates of error variability within sex produces plots which are in line with what 
we would expect in this case. Thus, this example also illustrates the importance of 
standardizing conditional residuals when checking assumptions about error variances. 

  Figure 10.9    Scatter plot matrix of the conditional residuals from model (10.5)       
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  Figure 10.10    Plots of conditional residuals vs fitted values from model (10.6)       
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  Cholesky residuals  

 In order to overcome the problems associated with the correlation in residuals from 
mixed models Fitzmaurice, Laird and Ware (2004, p. 238) recommend that the 
residuals be transformed so that ideally they have zero correlation and constant 
variance. While there are a number of ways to do this (see Weiss, 2005, pp. 330–
331), Fitzmaurice, Laird and Ware (2004, p. 238) consider the transformation based 
on the Cholesky decomposition of   Σ  . At this point we need to reintroduce some 
notation. 

 Combining the random effects and the error term, we can rewrite (10.7) as

   0 1ij j ij
Y xb b e= + +

   
(10.10)

 

 where   e
ij
 = b

i
 + e

ij
   is assumed to follow a normal distribution with mean 0 and vari-

ance given by the appropriate element of the variance covariance matrix   Σ  , which 
was given below (10.3). In general matrix notation, (10.10) can be written as

   b e= +Y X    
(10.11) 



 Just as we did in Chapter 9, we can express the symmetric positive-definite matrix 
  Σ   as

  Σ = SS¢   

 where  S  is a lower triangular matrix with positive diagonal entries. This result is 
commonly referred to as the Cholesky decomposition of   Σ  . Roughly speaking,  S  
can be thought of as the “square root” of   Σ  . 

 Multiplying each side of (10.11) by  S  –1 , the inverse of  S , gives

1 1 1
S S Sb e− − −= +Y X      

 Notice that

  
( ) ( )( ) ( ) ( )Var Var

1 1 1 1 1 1 1 ,S S S S S S SS Se e− − − − − − −′ ′ ′= = ∑ = =′ I
   

 the identity matrix. Thus, pre-multiplying each term in equation (10.11) by  S  –1 , the 
inverse of  S , produces a linear model with uncorrelated errors. In other words, let

  Figure 10.11    Plots of conditional residuals vs fitted values from model (10.5)       
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* 1 * 1 * 1, ,S S Se e− − −= = =Y Y X X    

 then,

   
* * *b e= +Y X    (10.12) 

 provides a linear model with uncorrelated errors with unit variance. 
 In practice, we replace the variance–covariance matrix   Σ   by an estimate   Σ̂   from 

which we obtain   Ŝ–1  , the Cholesky decomposition of the inverse of   Σ̂   . Instead of 
fitting (10.12), we could transform   ê  , the residuals from model (10.11) by pre-
multiplying them by   Ŝ–1   to produce the following set of transformed residuals

  
( )* 1 1 ˆˆ ˆˆ ˆS Se e b− −= = −Y X

   

 These residuals are also called scaled or  Cholesky residuals . Their properties were 
studied by Houseman, Ryan and Coull (2004). In practice, since we use the esti-
mated variance–covariance matrix the Cholesky residuals are not completely 
uncorrelated. 

 Figure  10.12  gives separate box plots of the Cholesky residuals from models (10.6) 
and (10.5) respectively against Sex. It is evident from these box plots that the Cholesky 
residuals for model (10.6) are more variable for males than females while the same is 
not true of the Cholesky residuals for model (10.5). This increase in variability in 
Cholesky residuals from model (10.6) for males is statistically significant (e.g., Levene’s 

  Figure 10.12    Box plots of the Cholesky residuals from models (10.5) and (10.6)       
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test for equality of variances  p -value = 0.012). Thus, the Cholesky residuals readily lead 
to the correct conclusion that the error variance differs across Sex.  

 Fitzmaurice, Laird and Ware (2004, p. 238) recommend that the standard set of 
regression diagnostics based on the Cholesky residuals be applied. In particular, 
one can check plots of   ê*   against   Ŷ *   and   X*   which should display no systematic 
patterns if the model is correctly specified.   

  10.2  Models with Covariance Structures 

Which Vary Over Time  

 Thus far in this chapter we have looked exclusively at regression models with ran-
dom intercepts. We discovered in Section  10.1  that a random intercepts model is 
equivalent to assuming a constant correlation within subjects over any chosen time 
interval. Fitzmaurice, Laird and Ware (2004, p. 78) describe this assumption as 
“often inappropriate for longitudinal data … where the correlations are expected to 
decay with increasing separation over time”. Moreover, Weiss (2005, p. 247) points 
out that the equal correlation assumption “is unlikely for real data measured on 
human beings over long enough periods of time” with the exception being “meas-
ures that are very persistent over the data collection time frame.” 

 In this section we look at models with covariance structures which vary over 
time. We shall use the following real example to highlight the challenges associated 
with fitting models to longitudinal data, namely, the choice of model for the fixed 
effects (i.e., the conditional mean structure) and the choice of the model for the 
error covariance are inter-reliant. 

  Pig weight data  

 Diggle, Heagerty, Liang and Zeger (2002, p. 34) consider a data set provided by Dr. 
Philip McCloud (when he was a faculty member at Monash University in 
Melbourne, Australia) on the weights of 48 pigs measured in 9 successive weeks. 
The data can be found on the book web site in the file pigweight.txt. We seek a 
model for the fixed effects (i.e., the conditional mean structure of pig weights over 
time), as well as a model for the error covariance. 

 Figure  10.13  shows a plot of weight against time (in weeks). Results from the 
same pig are connected by dotted lines. It is apparent from this figure that there is 
an increasing trend in both the mean and the variance of weight as time increases.  

 We next investigate the covariance structure in these data. In what follows, we 
shall denote the pig weights at weeks 1, 2, …, 9 by T1, T2, …. T9, respectively. 
Figure  10.14  shows a scatter plot matrix of the pig weights at weeks 1, 2, … 9.  

 The output from R below gives the correlations between T1, T2, …., T9. Notice 
how the correlations decay as the time interval between the measurements increase. 
The decreasing correlation as the time interval between measurements increases is 
clearly evident in Figure  10.14 . 
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  Output from R: Correlations between measurements  

  T1 T2 T3 T4 T5 T6 T7 T8 T9   
 T1 1.00 0.92 0.80 0.80 0.75 0.71 0.66 0.63 0.56   
 T2 0.92 1.00 0.91 0.91 0.88 0.84 0.78 0.71 0.66   
 T3 0.80 0.91 1.00 0.96 0.93 0.91 0.84 0.82 0.77   
 T4 0.80 0.91 0.96 1.00 0.96 0.93 0.87 0.83 0.79   
 T5 0.75 0.88 0.93 0.96 1.00 0.92 0.85 0.81 0.79   
 T6 0.71 0.84 0.91 0.93 0.92 1.00 0.96 0.93 0.89   
 T7 0.66 0.78 0.84 0.87 0.85 0.96 1.00 0.96 0.92   
 T8 0.63 0.71 0.82 0.83 0.81 0.93 0.96 1.00 0.97   
 T9 0.56 0.66 0.77 0.79 0.79 0.89 0.92 0.97 1.00   

  10.2.1 Modeling the Conditional Mean 

 When there are relatively few time points and measurements are available for each 
subject at all of these time points, it is possible to consider a so-called unstructured 
covariance matrix for the error term while concentrating on finding a parsimonious 
model for the conditional mean. Having found such a model one can then attempt 
to find a parsimonious model for the error covariance. We shall adopt this strategy 
for the pig weight data, even though there are nine time points. On the other hand, 
when it is not possible to consider an unstructured covariance matrix for the error 

  Figure 10.13    Plot of pig weights over time       
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term the usual practice is to fit a maximal model for the conditional mean and then 
concentrate on finding a parsimonious model for the error covariance. 

  A straight line model for the conditional mean  

 A number of authors including Diggle, Heagerty, Liang and Zeger (2002), Yang and 
Chen (1995), Ruppert, Wand and Carroll (2003) and Alkhamisi and Shukur (2005) 
have modeled the conditional mean weight at a given week by a straight line but 
suggested different error structures. Thus, we shall start with a straight-line model 
for the conditional mean. Thus we shall consider the following model for the weight 
 Y  

 ij 
  of the  i th pig ( i  = 1, 2, … 48) in the  j th week  x  

 j 
  (j = 1, …, 9):

  0 1ij j ij
Y xb b e= + +

   

 In general matrix notation, this is

   b e= +Y X    
(10.13)

 

  Figure 10.14    Scatter plot matrix of the pig weights at weeks 1 to 9       
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 where in this example
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 We shall assume that
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 where in this example   Σ   is the following matrix:
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 with  D  a positive-definite and symmetric   (9 × 9)   matrix. In particular we allow the 
diagonal entries (i.e., the variances at each time point) to differ. This is in line with 
the following advice from Fitzmaurice, Laird and Ware (2004, p. 169) that “practi-
cal experience based on many longitudinal studies has led to the empirical observa-
tion that variances are rarely constant over time.” 

 Given below is the output from R associated with fitting model (10.13) using 
REML. Notice how in this case the estimated error variance increases over time. 

  Output from R: REML fit of model (10.13)  

 Generalized least squares fit by REML   
 Model: weight ~ Time   
 Data: pigweights   
  AIC BIC logLik   
  1635.943 1826.941 -770.9717   
 Correlation Structure: General   
 Formula: ~1 | Animal   
 Parameter estimate(s):   



 Correlation:   
  1 2 3 4 5 6 7 8   
 2 0.894   
 3 0.722 0.895   
 4 0.767 0.910 0.946   
 5 0.742 0.879 0.889 0.956   
 6 0.694 0.836 0.876 0.930 0.923   
 7 0.650 0.774 0.806 0.863 0.857 0.963   
 8 0.602 0.720 0.812 0.835 0.810 0.927 0.953   
 9 0.546 0.669 0.753 0.789 0.788 0.891 0.917 0.968   

 Variance function:   
 Structure: Different standard deviations per stratum   
 Formula: ~1 | Time   
 Parameter estimates:  
 1 2 3 4 5 6
 1.000000 1.133915 1.514700 1.524495 1.825750 1.798021 

 7 8 9
 2.005047 2.212073 2.561561

 Coefficients:  
  Value Std. Error t-value p-value   
 (Intercept) 19.072855 0.3292651 57.92552 0   
 Time 6.174367 0.0791560 78.00249 0  

 Residual standard error: 2.476831  
 Degrees of freedom: 432 total; 430 residual   

 In order to check whether a straight line provides an adequate model for the 
conditional mean pig weight at a given week we shall examine the Cholesky residu-
als associated with model (10.13). Figure  10.15  shows a plot of the Cholesky 
residuals against  x *, the second column of   X* = S–1X   where  S  is a lower triangular 
matrix with positive diagonal entries such that   Σ̂ = SS′  . Figure  10.15  also includes 

the loess fit (with   1
3

a =   ).  
 If the straight-line model for the fixed effects is valid then there should be no 

discernible pattern in Figure  10.15 . Instead, the loess fit in Figure  10.15  suggests 
that there is some structure in the Cholesky residuals. In order to check that we are 
not over interpreting the pattern in Figure  10.15 , we fit a fifth-order polynomial fit 
to the Cholesky residuals in Figure  10.15  as a function of  x *. The resulting overall 
F-statistic is highly significant ( p -value = 0.0002). Thus, there is evidence that 
model (10.13) is an invalid model for the fixed effects. 

 In view of this we shall consider an expanded model for the fixed effects. We 
could include polynomial terms in Time as predictors. In view of the fact that a 
fifth-order polynomial fit to the Cholesky residuals in Figure  10.15  is highly sig-
nificant it seems natural to consider a fifth-order polynomial model in Time. 
However, the resulting regression coefficients of such a high-order polynomial 
model are difficult to interpret in practice. 

10.2 Models with Covariance Structures Which Vary Over Time 357



358 10 Mixed Models

  A regression spline model for the conditional mean  

 Thus, instead, at this point we consider an alternative way of expanding model 
(10.13) which we shall see is straightforward to interpret, namely, linear regression 
splines. Put simply, a linear regression spline consists of a series of connected line 
segments joined together at what are commonly referred to as knots. 

 In order to proceed we introduce some notation. Define

   
if

0 if( ) {x k x k

x k
x k

− >
+ ≤− =

   
(10.14) 

The left-hand plot in Figure  10.16  provides a graphical depiction of   (x – k)
+
   with  k  

set equal to 5. The inclusion of   (x – k)
+
   as a predictor produces a fitted model which 

resembles a broken stick, with the break at the knot  k . Thus, this predictor allows 
the slope of the line to change at  k . The right-hand plot in Figure  10.16  shows a 
stylized example of a spline model with a knot at  x  = 5 illustrating these points. The 
exact form of this stylized model is as follows: 

E( | ) 0.75( 5)Y x x x += − −

 Utilizing (10.14) we find that in this case 

  
if 5

0.25 if 5E( | ) {x x

x x
Y x

≤
>=

   

  Figure 10.15    Plot of the Cholesky residuals from model (10.13) against  x *       
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 In other words, the model in right-hand plot in Figure  10.16  is made up of con-
nected straight lines with slope equal to 1 if   x ≤ 5    and slope equal to 0.25 if x > 5.

 We next consider linear regression splines in the context of the pig weight example. 
In order to make the model for the fixed effects as flexible as possible at this exploratory 
stage, we shall add knots at all the time points except the first and the last. This will 
produce a model which consists of a series of connected line segments whose slopes 
could change from week to week. Thus, we shall add the following predictors to model 
(10.13)   (x – 2)

+ 
,(x – 3)

+ 
, …(x – 8)

+
    and hence consider the following model

   b e= +Y X    
(10.15)

where in this example
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  Figure 10.16    Graphical depiction of   (x – 5)
+
   and a stylized linear regression spline       
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where  Y  
 ij 
  again denotes the weight of the  i th pig ( i  = 1, 2, … 48) in the  j th week  x  

 j 
  

(j = 1, …, 9). We shall assume that  

   ~ ( , )Ne ∑0   

  where   Σ   is given below (10.13). Model (10.15) is equivalent to allowing the mean 
weight to be different for each of the 9 weeks and thus can be thought of as a full 
model (or a saturated model as it sometimes called). 

 Given below is the output from R associated with fitting model (10.15) using 
REML. In the output below (x – 2)

+
…(x – 8)

+
 are denoted by TimeM2Plus , …, 

TimeM8Plus. Looking at the output we see that the coefficients of TimeM3Plus, 
TimeM7Plus and TimeM8Plus (i.e., of (x – 3)

+ 
,(x – 7)

+ 
and (x – 8)

+
) are highly 

statistically significant. The coefficients TimeM3Plus and TimeM8Plus are 
negative, while the coefficient of TimeM3Plus is positive indicating that the 
weekly weight gain in pigs both slows and increases rather than remaining constant 
over the nine week time frame. 

  Output from R: REML fit of model (10.15)  

 Generalized least squares fit by REML   
 Model: weight ~ Time + TimeM2Plus + TimeM3Plus + TimeM4Plus +
TimeM5Plus + TimeM6Plus + TimeM7Plus + TimeM8Plus   
 Data: pigweights   
      AIC     BIC    logLik   
  1613.634 1832.192 –752.817   
 
Correlation Structure: General   
 Formula: ~1 | Animal   
 Parameter estimate(s):   
 Correlation:   
  1 2 3 4 5 6 7 8   
 2 0.916   
 3 0.802 0.912   
 4 0.796 0.908 0.958   
 5 0.749 0.881 0.928 0.962   
 6 0.705 0.835 0.906 0.933 0.922   
 7 0.655 0.776 0.843 0.868 0.855 0.963   
 8 0.625 0.713 0.817 0.829 0.810 0.928 0.959   
 9 0.558 0.664 0.769 0.786 0.786 0.889 0.917 0.969   

 Variance function:   
 Structure: Different standard deviations per stratum   
 Formula: ~1 | Time   
 Parameter estimates:   
  1 2 3 4 5 6 7 8 9   
  1.000000 1.130230 1.435539 1.512632 1.836842 1.802349 2.014343 2.197068 2.566113   



 Coefficients:   
  Value Std. Error t-value p-value   
 (Intercept) 18.260417 0.3801327 48.03695 0.0000   
 Time 6.760417 0.1623937 41.62980 0.0000   
 TimeM2Plus 0.322917 0.2294228 1.40752 0.1600   
 TimeM3Plus -1.552083 0.2925786 -5.30484 0.0000   
 TimeM4Plus 0.229167 0.2432416 0.94214 0.3467   
 TimeM5Plus 0.531250 0.3931495 1.35127 0.1773   
 TimeM6Plus -0.281250 0.2646021 -1.06292 0.2884   
 TimeM7Plus 0.833333 0.2974978 2.80114 0.0053   
 TimeM8Plus -0.927083 0.2757119 -3.36251 0.0008   

 Residual standard error: 2.468869   
 Degrees of freedom: 432 total; 423 residual   

 At this point, we are interested in an overall test which compares models (10.13) and 
(10.15), that is, we are interested in comparing models with nested fixed effects but the 
same Σ. As we discussed earlier in Section  10.1.1 , the ML log-likelihoods for models 
with the same Σ can be used to produce a likelihood ratio test to compare two nested 
models for fixed effects. This test is based on comparing twice the difference in the two 
maximized ML log-likelihoods to a chi-squared distribution with degrees of freedom 
equal to the difference between the number of fixed effects parameters in the full and 
reduced models. We look at such a test next for models (10.13) and (10.15). 

  Output from R: Comparing ML fits of models (10.13) and (10.15)  

  Model df AIC BIC logLik Test L.Ratio p-value   

 m10p13.ML 1 47 1632.303 1823.520 -769.1517   

 m10p15.ML 2 54 1600.992 1820.687 -746.4958 1   vs   2 45.31183 <.0001   

 The model degrees of freedom reported in the R output include   9 × (9 + 1)/2 = 45   
associated with estimating each element in Σ. The model degrees of freedom for 
model (10.13) total 47, due to the two fixed effects in (10.13). The seven extra degrees 
of freedom in the R output for model (10.15) correspond to the seven additional pre-
dictor variables   (x – 2)

+ 
,(x – 3)

+ 
, …(x – 8)

+
  . The likelihood ratio statistic comparing 

models (10.13) and (10.15) equals 45.3. Comparing this result to a chi-squared dis-
tribution with degrees of freedom equal to 7, results in a  p -value < 0.0001. Thus, 
model (10.15) is to be preferred over model (10.13). This provides further evidence 
that the straight-line model (10.13) is an invalid model for the data. 

 However, model (10.15) includes some redundancy due to the fact that a number 
of the regression spline terms are not statistically significant. Ideally, we would like 
to remove this redundancy by reducing the number of knots and hence effectively 
removing some of the (x – k)

+
 terms from the model. 

  Knot selection for linear regression splines  

 In general, deciding which knots (i.e., which of the (x – k)
+
 terms) to include in a 

model based on linear regression splines is “mixture of art and science. When it is 
available, subject-matter knowledge should be brought to bear on the empirical 
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evidence for the most appropriate choice of knot location(s)” (Fitzmaurice, Laird, 
and Ware, 2004, p. 150). In terms of science, this is a variable selection problem. 
In practice, stepwise methods based on AIC, AIC

C
 or BIC such as those discussed 

in Section 7.2.2 are commonly used for this purpose. This is especially the case 
when there are many potential locations for knots. If there are a relatively small 
number of potential knots, then another approach is to remove all the statistically 
insignificant spline terms and then use a hypothesize test to compare the full and 
reduced models. Weiss (2005, p. 227) provides an example illustrating the use of 
the latter approach. We shall consider both approaches. We begin by considering 
the latter approach first. 

  Choosing knots by removing statistically insignificant spline terms  

 We next remove the insignificant spline predictor terms from model (10.15) (i.e., 
  (x – 2)

+
,(x – 4)

+
,(x – 5)

+
,(x – 6)

+
  ) and thus consider the following model

   
Y Xb e= +    

(10.16) 

where in this example
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where  Y  
 ij 
  again denotes the weight of the  i th pig ( i  = 1, 2, … 48) in the  j th week  x  

 j 
  

(j = 1, …, 9). We shall assume that

~ ( , )Ne ∑0

 where Σ is given below (10.13). 
 Recall that the REML log-likelihoods for models with different fixed effects 

are not comparable. Thus we consider instead the ML log-likelihoods to compare 
models (10.15) and (10.16). The R output given below shows that the ML likeli-
hood ratio statistic comparing the fixed effects in models (10.16) and (10.15) 
equals 7.1. Comparing this result to a chi-squared distribution with degrees of 
freedom equal to 4, results in a  p -value = 0.129. Thus, based on the result of this 
hypothesis test, model (10.16) is to be preferred over model (10.15). Notice also 
that model (10.16) is to be preferred over model (10.15) in terms of having lower 
values of AIC and BIC. 



  Output from R: Comparing ML fits of models (10.15) and (10.16)  

   Model df AIC BIC logLik Test L.Ratio p-value  
 m10p16.ML 1 50 1600.125 1803.546 -750.0624   
 m10p15.ML 2 54 1600.992 1820.687 -746.4958 1 vs 2 7.133239 0.129  

        Given below is the output from R associated with fitting model (10.16) using 
REML. Recall that in the output   (x – 3)

+
   is denoted by TimeM3Plus etc. 

  Output from R: REML fit of model (10.16)  

 Generalized least squares fit by REML   
 Model: weight ~ Time + TimeM3Plus + TimeM7Plus + TimeM8Plus   
 Data: pigweights   
  AIC BIC logLik   
  1608.513 1811.352 -754.2563   
 Correlation Structure: General   
 Formula: ~1 | Animal   
 Parameter estimate(s):   
 Correlation:   
  1 2 3 4 5 6 7 8   
 2 0.916   
 3 0.800 0.909   
 4 0.796 0.909 0.955   
 5 0.749 0.881 0.924 0.963   
 6 0.703 0.832 0.906 0.929 0.918   
 7 0.651 0.771 0.844 0.863 0.849 0.964   
 8 0.620 0.706 0.816 0.821 0.802 0.927 0.959   
 9 0.553 0.657 0.769 0.779 0.778 0.889 0.917 0.970   
 
Variance function:   
 Structure: Different standard deviations per stratum   
 Formula: ~1 | Time   
 Parameter estimates:   
   1 2 3 4 5 6 7 8 9 
 1.00000 1.130610 1.434703 1.512738 1.835018 1.803845 2.019489 2.206996 2.575084       

 Coefficients:   
  Value Std. Error t-value p-value   
 (Intercept) 18.256899 0.3550314 51.42334 0.0000   
 Time 6.820637 0.1377675 49.50832 0.0000   
 TimeM3Plus -0.981699 0.1382106 -7.10292 0.0000   
 TimeM7Plus 0.828698 0.2106252 3.93447 0.0001   
 TimeM8Plus -0.767966 0.2497377 -3.07509 0.0022   
 Residual standard error: 2.46725   
 Degrees of freedom: 432 total; 427 residual   

 Notice that each of the regression coefficients of  x ,   (x – 3)
+ 
,(x – 7)

+ 
and (x – 8)

+
   

are highly statistically significant indicating that there is no redundancy in the fixed 
effects in model (10.16). Looking further at the output associated with the REML 
fit of model (10.16) we see the following. The estimated coefficient of  x  (Time) 
which measures the overall weekly trend in pig weight is 6.82. The estimated coef-
ficient of (x – 3)

+
 is –0.98, which means that this trend decreases by this amount 

each week after week 3. The estimated coefficient of (x – 7)
+
 is 0.83, which means 
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that the trend further increases after week 7 by 0.83. Finally, the estimated coeffi-
cient of (x – 8)

+
 is –0.77, which means that the trend further decreases after week 8 

by 0.77. 

  Choosing knots using variable selection  

 We next consider variable selection methods for choosing the knots. In particular, 
we consider stepwise methods based on AIC and BIC, since in the current 
situation the approach based on all subsets would require 27 – 1 = 127 models to 
be fit. Table  10.4  gives the values of AIC and BIC found from backwards 
elimination (i.e., start with all knots in the model and at each step eliminate a 
knot). Note that maximum likelihood was used for each of the stepwise fits, since 
REML log-likelihoods of models with different fixed effects are not comparable. 
Highlighted in bold in Table  10.4  are the minimum values of AIC and BIC found 
from backwards elimination.  

 We see from Table  10.4  that based on backwards elimination BIC judges the 
model with knots at weeks 3, 7, 8, that is, model (10.16), to be “best” while AIC 
has an extra knot at week 5 in its “best” model. 

 Table  10.5  gives the values of AIC and BIC found from forwards selection (i.e., 
start with no knots in the model and at each step add a knot). Highlighted in bold 
are the minimum values of AIC and BIC found from forwards selection.  

  Table 10.4    Values of AIC and BIC from backwards elimination    

 Subset size  Knots located at  AIC  BIC 

 7  2,3,4,5,6,7,8  1600.992  1820.687 
 6  2,3,5,6,7,8  1599.890  1815.516 
 5  3,5,6,7,8  1599.524  1811.082 
 4  3,5,7,8   1599.149   1806.639 
 3  3,7,8  1600.125   1803.546  

 2  3,7  1605.801  1805.154 
 1  3  1608.973  1804.257 

  Table 10.5    Values of AIC and BIC from forwards selection    

 Subset size  Knots located at  AIC  BIC 

 1  3  1608.973  1804.257 
 2  3,5  1604.332   1803.685  

 3  3,5,8  1601.273  1804.694 
 4  3,5,7,8   1599.149   1806.639 
 5  3,5,6,7,8  1599.524  1811.082 
 6  2,3,5,6,7,8  1599.890  1815.516 
 7  2,3,4,5,6,7,8  1600.992  1820.687 



 We see from Table  10.5  that based on forwards selection AIC judges the model 
with knots at weeks 3, 5, 7 and 8 as “best” while BIC judges the model with knots 
at weeks 3 and 5 to be “best.” Comparing the results in Tables  10.4  and  10.5 , we 
see that while AIC identifies the same model as “best” based on forwards selection 
and backward elimination, BIC does not. (The lack of complete agreement between 
the results of forwards and backwards stepwise approaches to choosing knots is not 
uncommon in practice.) Notice also that the value of BIC for the “best” model from 
backwards elimination is lower than the corresponding value for forwards selec-
tion. Thus, based on BIC, stepwise methods point to the model with knots at weeks 
3, 7 and 8, that is, model (10.16), as “best.” 

 We next consider the model judged as “best” from stepwise methods based on 
AIC and thus consider the following model

   Y = Xb + e   (10.17) 

where in this example

  

1,1 1 1 1 1 1

1,9 9 9 9 9 9

1 1 1 1 148,1
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1 ( 3) ( 5) ( 7) ( 8)
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where  Y  
 ij 
  again denotes the weight of the  i th pig ( i  = 1, 2, … 48) in the  j th week  x  

 j 
  

(j = 1, …, 9). We shall assume that 

e ∼ N(0,Σ)

 where   Σ   is given below (10.13). 
 The R output given below shows that the ML likelihood ratio statistic comparing 

the fixed effects in models (10.17) and (10.16) equals 2.98. Comparing this result 
to a chi-squared distribution with one degree of freedom, results in a  p -value = 
0.0845. However, as discussed in Chapter 7, after variable selection the  p -values 
obtained are much smaller than their true values. In view of this, there is little evi-
dence to prefer the more complex model (10.17) over model (10.16). Thus, we will 
consider model (10.16) as our parsimonious model for the fixed effects. 

  Output from R: Comparing ML fits of models (10.16) and (10.17)  

   Model df AIC BIC logLik Test L.Ratio p-value  
 m10p17.ML 1 51 1599.149 1806.639 -748.5744  

m10p16.ML 2 50 1600.125 1803.546 -750.0624 1 vs 2 2.976025 0.0845       
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 The potential problems associated with using stepwise methods to choose knots 
for regression splines are well-documented in the statistics literature. For example, 
Zhou and Shen (2001) provide a simple numerical example for iid data which illus-
trates the tendency of stepwise knot selection methods to not locate the optimal 
knots and to select more knots than necessary. They conclude that these tendencies 
are due to the fact that stepwise methods do not take into account the association 
between knots. 

 We conclude this discussion of choosing knots for regression splines by reiterat-
ing the fact that subject-matter knowledge should be brought to bear and that one 
can not blindly rely on the output from stepwise selection methods. 

  Parsimonious models for the error variance–covariance  

 Given that we have a parsimonious model for the fixed effects (i.e., model (10.16)), 
the next natural step is to try to replace the unstructured variance–covariance matrix 
Σ with a more parsimonious one. One of the advantages of imposing structure on Σ 
is that the precision with which the fixed effects are estimated can be improved. In 
many situations it is impractical or even impossible to model Σ by an unstructured 
variance–covariance matrix. Such situations include unbalanced data when there 
are no more than one data point for an individual at a given time point. Thus, it is 
often important to choose an appropriate variance–covariance structure from a 
parameterized family. 

Recall that the correlations within individual pigs decay as the time interval 
between measurements increases (see Figure  10.14 ). Thus, we shall begin by 
considering an autoregressive model. The simplest autoregressive model is one of 
order 1 (denoted by AR(1)). In this situation, the correlation within a subject is 
given by

Corr( , ) k

ij ij k
Y Y r+ =

In the pig weight example we shall model Σ by an AR(1) structure with variances 
which differ across time. Thus, we shall consider model (10.16) with the following 
error structure
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 Given below is the output from R associated with fitting model (10.16) using 
REML with the AR(1) error structure given above. 



  Output from R: REML fit of model (10.16) with autoregressive errors  

 Generalized least squares fit by REML   
 Model: weight ~ Time + TimeM3Plus + TimeM7Plus + TimeM8Plus   
 Data: pigweights   
  AIC BIC logLik   
  1612.402 1673.254 -791.2011   
 Correlation Structure: AR(1)   
 Formula: ~1 | Animal   
 Parameter estimate(s):   

 Phi   
 0.9459695   
 Variance function:   
 Structure: Different standard deviations per stratum   
 Formula: ~1 | Time   
 Parameter estimates:   
  1 2 3 4 5 6 7 8 9   
  1.000000 1.129118 1.370539 1.378911 1.644508 1.563842 1.678001 1.788608 2.080035   

 Coefficients:   
  Value Std.Error t-value p-value   
 (Intercept) 18.124607 0.3585966 50.54316 0.0000   
 Time 6.901602 0.1213129 56.89093 0.0000   
 TimeM3Plus -1.011721 0.1608429 -6.29012 0.0000   
 TimeM7Plus 0.953291 0.2509478 3.79876 0.0002   
 TimeM8Plus -0.933510 0.3453573 -2.70303 0.0071   

 Residual standard error: 2.768629   
 Degrees of freedom: 432 total; 427 residual   

 Comparing the estimates of the fixed effects above with those obtained with the 
general variance–covariance structure we see that they are quite similar with the biggest 
difference occurring for the coefficients of (x – 7)

+ 
and (x – 8)

+
. With one exception, the 

standard errors of the estimates of the fixed effects are slightly larger for the model with 
autoregressive errors. The similarity of the estimates of the fixed effects is to be 
expected since as we saw in Chapter 9, the estimates of the fixed effects are unbiased 
even when the error variance-covariance is incorrectly specified. On the other hand, if 
the error variance–covariance is incorrectly specified the standard errors are not correct 
leading to the possibility of misleading inferences. 

 As we discussed earlier in Section  10.1.1 , the REML log-likelihoods for models 
with the same fixed effects can be used to produce a likelihood ratio test to compare 
two nested covariance models. This test is based on comparing twice the difference 
in the two maximized REML log-likelihoods to a chi-squared distribution with 
degrees of freedom equal to the difference between the number of covariance 
parameters in the full and reduced models. We look at such a test next. 

  Output from R: Comparing REML fits of (10.16) with different errors  

   Model df AIC BIC logLik Test L.Ratio p-value  
 m10p16.AR1 1 15 1612.402 1673.254 -791.2011  

m10p16 2 50 1608.513 1811.352 -754.2563 1 vs 2 73.88972 1e-04       
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 The R output given above shows that the REML likelihood ratio statistic com-
paring model (10.16) with unstructured and autoregressive errors equals 73.9. 
Comparing this result to a chi-squared distribution with degrees of freedom equal 
to 35, results in a  p -value = 0.0001. Thus, model (10.16) with the general error 
structure is to be preferred. We take up the issue of finding a parsimonious model 
for the error structure for the pig weight data in the exercises. 

 It is common to want to compare non-nested models for the variance–covariance. 
For example, imagine a situation in which the competing models are compound 
symmetry (or equivalently random intercepts) and autoregressive of order 1. In this 
situation, AIC and BIC can potentially be used, with lower values of AIC and BIC 
corresponding to better fitting models. However, Fitzmaurice, Laird, and Ware (2004, 
p. 177) “do not recommend the use of BIC for covariance model selection as it entails 
a high risk of selecting a model that is too simple or parsimonious for the data at 
hand.” Looking at the R-output that compares model (10.16) with unstructured and 
autoregressive errors, we see an example of this phenomenon re BIC, namely BIC 
prefers the autoregressive model, which in this case is statistically significantly worse. 
On the other hand, AIC prefers the unstructured covariance matrix. 

 Finally, we briefly mention a promising relatively new graphical technique for 
identifying a parsimonious model for the variance–covariance structure in a mixed 
model, known as the regressogram of Σ. A discussion of the details is beyond the 
scope of this book. Interested readers can find more details on this approach in 
Pourahmadi (2001, Section 3.5).   

  10.3 Exercises  

    1.    Consider once again the orthodontic growth data in Section  10.1 . In particular, 
consider model (10.5) which includes random intercepts and an error term 
whose variance differs across gender. Compare model (10.5) to a model with the 
same fixed effects but an unstructured covariance matrix, which allows for vari-
ances to differ across genders. Test whether the unstructured covariance should 
be preferred using the maximized REML log-likelihoods.  

   2.    Consider once again the pig weight data in Section  10.2 . We shall demonstrate 
in this exercise that smaller estimated standard errors for the fixed effects in a 
mixed model does not always correspond to a better model.

    (a)    Purely for illustration puposes Ruppert, Wand and Carroll (2003) fit a ran-
dom intercepts model with constant error variance at each time point to the 
pig weight data. Fit this model using REML.  

    (b)    Diggle, Heagerty, Liang and Zeger (2002, p. 77) adopt a model with both 
random intercepts and random slopes as a “working model.” Using their 
notation, this model can be written as for the weight  Y  

 ij 
  of the  i th pig in the 

 j th week ( x  
 j 
 ):         

1,...,9; 1,...,48
ij j i i j ij

Y x U W x Z j ia b= + + + + = =
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 where  Y  
 ij 
  is the weight of the  i th pig in the  j th week ( x  

 j 
 ) and where U

i
 ~  N(0,s 2), 

W
i
 ~  N(0,n 2), Z

ij
 ~  N(0,t 2) are all mutually independent. Fit this model using 

REML.

    (a)    First, compare the models in (a) and (b) in terms AIC and maximized REML 
likelihoods. Show that the model in (b) is a dramatic improvement over the 
model in (a).  

    (b)    Next, compare the models in (a) and (b) in terms of the standard errors of 
the estimates of the fixed effects. Show that the model in (a) produces a 
much smaller estimate of the standard error of the fixed slope effect.  

   3.    Consider once again the pig weight data in Section  10.2 . We showed that model 
(10.16) with the general error structure is to be preferred over the same model 
for the fixed effects with an AR(1) error structure. Try to find a parsimonious 
model for the error structure.  

   4.    Belenky, Wesensten, Thorne, Thomas, Sing, Redmond, Russo and Balkin (2003) 
examine daytime performance changes of 66 subjects who had spent either 3, 5, 
7 or 9 hours daily time in bed for 7 days after having their normal amount of 
sleep on day 0. We shall just consider the 18 subjects who spent 3 hours in bed. 
The data consist of the average reaction time on a series of tests given daily to 
each subject. The data are part of the R-package lme4 and they can be found on 
the book web site in the file sleepstudy.txt.

    (a)    Obtain plots of the data and summary statistics such as sample correlations 
in order to examine the mean structure and the error structure of the data. 
Identify any unusual data points.         

The model we first consider for subject  i  ( i  = 1, 2, …, 18) at Days  j  ( j  = 0, 1, 2, 
3, … 9) is as follows:

 Reaction
ij
 = b

0 
+ b

1 
Days

j 
+ e

ij 
(10.17)

 where e
ij 
represents a general error term.

    (b)    Fit model (10.17) with an unstructured covariance matrix, which allows for 
variances to differ across Days.  

    (c)    Fit model (10.17) with random intercepts and random slopes and an error 
term whose variance differs across Days.  

    (d)    Fit model (10.17) with random intercepts and an error term whose variance 
differs across Days.  

    (e)    Compare the models in (b), (c) and (d) in terms of the maximized REML 
log-likelihoods and the estimated standard errors of the fixed effects.  

    (f)    Expand model (10.17) by adding (Days – 1)
+
, (Days – 2)

+
, … (Days – 8)

+
 as 

predictors. Fit the expanded model with an unstructured covariance matrix, 
which allows for variances to differ across Days. Show that it is an improve-
ment on model (10.17). Remove any redundancies in the fixed effects. 
Finally, attempt to find a parsimonious model for the error structure.         



     Appendix: Nonparametric Smoothing        

 In this book we make use of two nonparametric smoothing techniques, namely, 
kernel density estimation and nonparametric regression for a single predictor. We 
discuss each of these in turn next. 

  A.1 Kernel Density Estimation  

 In this section we provide a brief practical description of density estimation based 
on kernel methods. We shall follow the approach taken by Sheather (2004). 

 Let   X
1
, X

2
, ..., X

n 
  denote a sample of size  n  from a random variable with density 

function  f . The kernel density estimate of  f  at the point  x  is given by 

 
1

1ˆ ( )
n

i

h

i

x X
f x K

nh h=

−⎛ ⎞
= ⎜ ⎟⎝ ⎠∑      

 where the kernel,  K  satisfies ∫K(x) dx =1 and the smoothing parameter,  h  is known 
as the bandwidth. In practice, the kernel  K  is generally chosen to be a unimodal 
probability density symmetric about zero. In this case,  K  also satisfies the following 
condition

 ( ) 0yK y dy =∫ .      

A popular choice for  K  which we shall adopt is the Gaussian kernel, namely, 

 
21

( ) exp
22

y
K y

p

⎛ ⎞
= −⎜ ⎟⎝ ⎠

     

 Purely for illustration purposes we shall consider a small generated data 
set. The data consists of a random sample of size  n  = 20 from a normal mix-
ture distribution made up of observations from a 50:50 mixture of  

( ) ( )m = - , s = m = , s =2 21 11   and  1
9 9

N N   . The data can be found on the book

web site in the file bimodal.txt. 
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 Figure  A.1  shows a kernel density estimate for these data using the Gaussian 
kernel with bandwidth  h  = 0.25 (the solid curve) along with the true underlying 
density (the dashed curve). The 20 data points are marked by vertical lines above 
the horizontal axis. Centered at each data point is its contribution to the overall 

density estimate, namely, 
1 1

(i.e., i
x X

K
nh h n

−⎛ ⎞
⎜ ⎟⎝ ⎠

 times a normal density with 

mean X
i     and standard deviation  h ). The density estimate (the solid curve) is the 

sum of these scaled normal densities. Increasing the value of  h  to 0.6 widens each 
normal curve producing a density estimate in which the two modes are less appar-
ent (see Figure  A.2 ).   

 Assuming that the underlying density is sufficiently smooth and that the kernel 
has finite fourth moment, it can be shown that the leading terms in an asymptotic 
expansion for the bias and variance of a kernel density estimate are given by

 { } m= ′′
2

2
asy 2

ˆBias ( ) ( ) ( )
2

h

h
f x K f x      

 { }=asy

1ˆVar ( ) ( ) ( )
h
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 where
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  Figure A.1    True density (dashed curve) and estimated density with  h  = 0.25 (solid curve)       
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 (e.g., Wand and Jones, 1995, pp. 20–21). In addition to the visual advantage of 
being a smooth curve, the kernel estimate has an advantage over the histogram in 
terms of bias. It can be shown that the bias of a histogram estimator with bandwidth 
 h  is of order  h , compared to leading bias term for the kernel estimate, which is of 
order  h  2 . Centering the kernel at each data point and using a symmetric kernel 
makes the bias term of order  h  equal to zero for kernel estimates. 

 A widely used choice of an overall measure of the discrepancy between    ̂¶
h
   and 

 f  is the mean integrated squared error (MISE), which is given by 
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 Under an integrability assumption on  f , the asymptotic mean integrated squared 
error (AMISE) is given by

 { }
4

2
2

1ˆAMISE ( ) ( ) ( )
4

h

h
f R K K R f

nh
m ¢¢= +       

 The value of the bandwidth that minimizes AMISE is given by
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  Figure A.2    True density (dashed curve) and estimated density with  h  = 0.6 (solid curve)       
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 The functional   R(f ″ )   is a measure of the underlying curvature. In particular, the 
larger the value of   R(f ″ )   the larger the value of AMISE (i.e., the more difficult it is 
to estimate  f ) and the smaller the value of   h

AMISE
   (i.e., the smaller the bandwidth 

needed in order to capture the curvature in  f ). 
 There are many competing methods for choosing a global value of the band-

width  h . For a recent overview of these methods see Sheather (2004). 
 A popular approach commonly called  plug-in methods  is to replace the unknown 

quantity   R(f ″ )   in the expression for  h  
AMISE

  given above by an estimate. This method 
is commonly thought to date back to Woodroofe (1970) who proposed it for esti-
mating the density at a given point. Estimating   R(f ″ )   by   R(f

g
″)   requires the user to 

choose the bandwidth  g  for this estimate. There are many ways this can be done. 
We next describe the “solve-the-equation” plug-in approach developed by Sheather 
and Jones (1991), since this method is widely recommended (e.g., Simonoff, 1996, 
p. 77; Bowman and Azzalini, 1997, p. 34; Venables and Ripley, 2002, p. 129) and 
it is available in R, SAS and Stata. 

 Different versions of the plug-in approach depend on the exact form of the esti-
mate of   R(f ″ )  . The Sheather and Jones (1991) approach is based on writing  g , the 
bandwidth for the estimate   R(f̂ ″ )  , as a function of  h , namely,

 
51

7 7( ) ( )[ ( ) / ( )]g h C K R f R f h¢¢ ¢¢¢=       

 and estimating the resulting unknown functionals of  f  using kernel density esti-
mates with bandwidths based on a normality assumption on  f . In this situation, the 
only unknown in the following equation is  h .
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 The Sheather–Jones plug-in bandwidth,  h  
SJ

  is the solution to this equation. For 
hard-to-estimate densities (i.e., ones for which |   f ″ ( x )   | varies widely due, for example, 
to the existence of many modes) the Sheather–Jones plug-in bandwidth tends to 
over-smooth and the method known as least squares cross-validation (Bowman and 
Azzalini, 1997, p. 32) can be recommended. However, in settings in which para-
metric regression models are appropriate, the Sheather–Jones plug-in bandwidth 
appears to perform well.  

  A.2 Nonparametric Regression for a Single Predictor  

 In this section we provide a brief practical description of nonparametric regression 
for a single predictor, which is sometimes called scatter plot smoothing. In this sec-
tion we are interested in nonparametric estimates of the regression function,  m ( . ) 
under the assumption of iid errors with constant variance. Thus, in symbols, we 
assume the following model for  i  = 1, …,  n 
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 = + = = +( ) E( | .)
i i i i i

Y m x e Y X x e       

 We shall consider two classes of estimators, namely, local polynomial kernel estimators 
and penalized linear regression splines. 

  A.2.1 Local Polynomial Kernel Methods 

 Local polynomial kernel methods (Stone, 1977; Cleveland, 1979) are based on the 
idea of approximating  m ( x ) by a low-order polynomial putting highest weight on 
the values of  y  corresponding to  x  

 i 
 ’s closest to  x . According to Cleveland (1979), 

the idea of local fitting of polynomials to smooth scatter plots of time series, meas-
ured at equally spaced time points, dates back to at least the 1930s. The local poly-
nomial estimator   m̂

p
 (x)  is the value of   b 

0
  that minimizes
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 where once again the kernel,  K  satisfies   ∫ K(x)dx = 1   and the smoothing parameter, 
 h  is known as the bandwidth. 

 The local constant estimator is obtained by setting  p  = 0 in the last equation. 
Thus, in this case we seek to minimize     
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 Differentiating with respect to b
0
 and setting the result to zero gives
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 Solving this equation for  b  
0
  gives the local constant estimator m̂

0
( x )  where
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 This estimator is also known as the Nadaraya-Watson estimator, as they were the 
first to propose its use (Nadaraya, 1964; Watson, 1964). It is also possible to derive 
an explicit regression for the local linear estimator   m̂

1
(x)   (see, e.g., Wand and Jones, 

1997, pp. 119, 144). 
 Choosing a higher degree polynomial leads in principle to a better approxi-

mation to the underlying curve and hence less bias. However, it also leads to 
greater variability in the resulting estimate. Loader  (1999, p. 22) provides the 
following advice: 
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 It often suffices to choose a low degree polynomial and concentrate on choosing the 
bandwidth to obtain a satisfactory fit. The most common choices are local linear and 
local quadratic. … a local constant fit is susceptible to bias and is rarely adequate. A 
local linear estimate usually performs better, especially at boundaries. A local quadratic 
estimate reduces bias further, but increased variance can be a problem, especially at 
boundaries. Fitting local cubic and higher orders rarely produces much benefit.   

 Based on their experience, Ruppert, Wand and Carroll (2003, p. 85) recommend 
 p  = 1 if the regression function is monotonically increasing (or decreasing) and  p  = 2 
otherwise. 

 For illustration purposes we shall consider a generated data set. The data con-
sists of  n  = 150 pairs of points ( x  

 i 
 ,  y  

 i 
 ) where   y

i 
= m(x

i
) + e

i
   with  x  

 i 
  equally spaced 

from 0 to 1, e
i
 ∼ N(0,σ2 = 4) and

 ( )( ) 15 1 cos(4 )
i i i

x xm xp= +       

 The data can be found on the book web site in the file curve.txt. 
 Figure  A.3  shows a local linear regression estimate for these data using the 

Gaussian kernel with bandwidth  h  = 0.026 (the solid curve) along with the true 
underlying curve (the dashed curve). The value of the bandwidth was chosen using 
the plug-in bandwidth selector of Ruppert, Sheather and Wand (2005). Marked as 
a dashed curve on Figure  A.3  is the weight function for each x

i 
used to estimate the 

curve at  x  = 0.5, namely,   
0.51 i

x
K

h h

−⎛ ⎞
⎜ ⎟⎝ ⎠

   (i.e., a normal density with mean 0.5 and 
standard deviation  h ).  

 Decreasing the value of  h  fivefold to 0.005, shrinks each normal curve so that each 
straight line is effectively fit over a very small interval. This produces a curve estimate 
which is much too wiggly (see the top panel of Figure  A.4 ). On the other hand, 
increasing the value of  h  fivefold to 0.132 widens each normal curve so that each 
straight line is effectively fit over a very large interval. This produces a curve estimate 
which is clearly over-smoothed, missing the bottom or the top of the peaks in the 
underlying curve (see the bottom panel of Figure  A.4 ). As the bandwidth  h  approaches 
infinity the local linear regression estimate will approach a straight line.  

 Thus far, in this section we have considered an example based on equally spaced 
 x ’s. In settings in which parametric regression models are generally appropriate it 
is common for the  x ’s not to be equally spaced. In particular, outliers, and sparse 
regions in the  x  values are common when the distribution of  x  is skewed. In such 
situations using a fixed value of the bandwidth  h  can be problematic, since there 
may be very few (sometime even no) points in certain regions of the  x -axis so that 
it is not possible to fit a local polynomial for certain values of  x . One way of solving 
this problem is to adjust the bandwidth with the value of  x  so that the number of 
points used to estimate  m ( x ) effectively remains the same for all values of  x . This 
is achieved using the concept of the  nearest neighbor bandwidth . 

 For  i  = 1, 2, …,  n , let d
i
(x) denote the distance  x  

 i 
  is away from  x , then

 d
i
(x) = |x–x

i
|          



Appendix: Nonparametric Smoothing 377

  Figure A.3    True curve (dashed) and estimated curve with  h  = 0.026 (solid)       
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  Figure A.4    True curve (dashed) and estimated curves (solid) with  h  = 0.005 (upper panel) and 
 h  = 0.132 (lower panel)       
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The  nearest neighbor bandwidth ,  h ( x ) is defined to be the  k th smallest   d
i
(x)   . In 

practice, the choice of  k  is based on what is commonly called the  span  a, namely,

 k na= ⎢ ⎥⎣ ⎦ .     

 Thus, the span plays the role of a smoothing parameter in nearest neighbor 
bandwidths. 

 Cleveland (1979) proposed the use of local linear regression estimators based on 
nearest neighbor bandwidths with the tricube kernel function

 ( ) ( )3
( ) 1 1 .y yK I y= − <       

 Cleveland (1979) also incorporated a robustness step in which large residuals were 
down weighted. This estimator is typically referred to as  lowess . Cleveland and 
Devlin (1988) studied the properties of local linear regression estimators based on 
nearest neighbor bandwidths with the tricube kernel without a robustness step. This 
estimator is typically referred to as  loess . 

 Figure  A.5  shows the loess estimate based on  p  = 2 (i.e., local quadratic) with 
span   a = 1/3   (the solid curve), along with the true underlying curve (the dashed 
curve). This value of the span was chosen by eye as the value that gave a curve that 
seemed to best match the data.  

 The loess estimate with span   a = 1/3   in Figure  A.5  fits the data well. Increasing the 
span to   a = 2/3  , produces a curve estimate which is slightly over-smoothed, missing 

  Figure A.5    True curve (dashed) and estimated curve (solid) with span = 1/3       
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the bottom or the top of the peaks in the underlying curve (see the top panel of 
Figure  A.6 ). On the other hand, decreasing the value of the span to α = 0.05 produces 
a curve estimate which is much too wiggly (see the bottom panel of Figure  A.6 ).  

 Nearest neighbor bandwidths do not perform well if the  x -space is sparse when 
the curve is wiggly and/or the  x -space is dense when the curve approximates a 
straight line. Fortunately, this is a highly unusual situation. 

 The marginal model plot method, proposed by Cook and Weisberg (1997) and 
described in Chapters 6 and 8, is based on loess fits. This is a natural choice for 
regression with continuous predictor and outcome variables due to the ability of 
loess to cope with sparse regions in the  x -space. However, its use for binary out-
come variables can be questioned, since it seems that no account is taken of the fact 
that binary data naturally have nonconstant variance. In this situation one could 
consider a local likelihood estimator, which takes account of the binomial nature of 
the data (see, e.g., Bowman and Azzalini, 1997, p. 55).  

  A.2.2 Penalized Linear Regression Splines 

 Another increasingly popular method for scatter plot smoothing is called penalized 
linear regression splines, which we discuss in this section. However, we begin by 
discussing linear regression splines. 

  Figure A.6    True curve (dashed) and estimated curves (solid) with span = 2/3 (upper panel) and 
span = 0.05 (lower panel)       
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 Linear regression splines are based on the inclusion of the following term as a 
predictor

 − >
+ ≤− = if

0 if( ) {x c x c

x c
x c       

 The inclusion of   (x – c)
+
   as a predictor produces a fitted model which resembles a 

broken stick, with the break at  c , which is commonly referred to as a knot. Thus, 
this predictor allows the slope of the line to change at  c . (See Figure 10.16 for 
details.) In order to make the model as flexible as possible, we shall add a large 
number of knots  c  

 1 
 , …., c  

 K 
  and hence consider the following model

 
K

0 1 1
1

( )
i i

i

y x b x c eb + b +
=

= + − +∑  (A.1)     

 We shall see that two approaches are possible for choosing the knots, corresponding to 
whether the coefficients   b

1i
   in (A.1) are treated as fixed or random effects. If the coef-

ficients are treated as fixed effects, then a number of knots can be removed leaving only 
those necessary to approximate the function. As demonstrated in Chapter 10, this is 
feasible if there are a relatively small number of potential knots. However, if there are a 
large number of potential knots, removing unnecessary knots is a “highly computation-
ally intensive” variable selection problem (Ruppert, Wand and Carroll, 2003, p. 64). 

 We next investigate what happens if the coefficients   b
1i
   in (A.1) are treated as random 

effects. In order to do this we consider the concept of penalized regression splines. 
An alternative to removing knots is to add a penalty function which constrains 

their influence so that the resulting fit is not overfit (i.e., too wiggly). A popular 

penalty is to ensure that the   b
1i
   in (A.1) satisfy  

K
2
1

1
i

i

b C
=

<∑ ,  for some constant  C , which 

has to be chosen. The resulting estimator is called a  penalized linear regression 

spline . As explained by Ruppert, Wand and Carroll (2003, p. 66) adding this pen-
alty is equivalent to choosing b

0 
b

1
,b

11
,
 
b

12
, ... b

1K 
to minimize

 ( )
K

2 2
0 1 1

1 1

1 n

i i i

i i

y x b
n

b b l
= =

− − +∑ ∑  (A.2)    

 for some number   l ³ 0  , which determines the amount of smoothness of the result-
ing fit. The second term in (A.2) is known as a roughness penalty because it penal-
izes fits which are too wiggly (i.e., too rough). Thus, minimizing (A.2) shrinks all 
the  b  

1 i 
  toward zero. Contrast this with treating the  b  

1 i 
  as fixed effects and removing 

unnecessary knots, which reduces some of the  b  
1 i 
  to zero. 

 The concept of random effects and shrinkage is discussed in Section 10.1. In view of 
the connection between random effects and shrinkage, it is not too surprising that there 
is a connection between penalized regression splines and mixed models. Put briefly, the 
connection is that fitting model (A.1) with   b

0
   and b

1 
treated as fixed effects and   b

11, 
b

12
, 

... b
1K

   treated as random effects is equivalent to minimizing the penalized linear spline 
criterion (A.2) (see Ruppert, Wand and Carroll, 2003; Section 4.9 for further details). 

 Speed  (1991) explicitly made the connection between smoothing splines and 
mixed models (although it seems that this was known earlier by a number of the 
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proponents of spline smoothing). Brumbac k, Ruppert and Wand (1999) made 
explicit the connection between penalized regression splines and mixed models. 

 An important advantage of treating (A.1) as a mixed model is that we can then 
use the likelihood methods described in Sect. 10.1 to obtain a penalized linear 
regression spline fit. 

 Finally, one has to choose the initial set of knots. Ruppert, Wand and Carroll 
(2003, p. 126) recommend that the knots be chosen at values corresponding to 
quantiles of  x  

 i 
 , while other authors prefer equally spaced knots. Ruppert, Wand and 

Carroll (2003, p. 126) have found that the following default choice for the total 
number of knots K “usually works well”:

 
⎛ ⎞= ×⎜ ⎟⎝ ⎠

1
min number of unique ,35K

4
i

x       

 Figure  A.7  shows a penalized linear regression spline fit obtained by fitting (A.1) 
using restricted maximum likelihood or REML (the solid curve) along with the 
true underlying curve (the dashed curve). The equally spaced knots, which are 
0.02 apart, are marked by vertical lines on the horizontal axis. Notice this is many 
more knots than is suggested by the rule above and it does not have any adverse 
effects on the fit. Increasing the spacing of the knots to 0.15 produces a curve 
estimate which is jagged, missing the bottom or the top of the peaks in the under-
lying curve and thus illustrating the problems associated with choosing too few 
knots (see Figure  A.8 ).   

  Figure A.7    True curve (dashed) and estimated curve (solid) with knots 0.02 apart       
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 Recently, Krivobokova  and Kauermann (2007) studied the properties of penal-
ized splines when the errors are correlated. They found that REML-based fits are 
more robust to misspecifying the correlation structure than fits based on general-
ized cross-validation or AIC. They also demonstrated the simplicity of obtaining 
the REML-based fits using R.          

  Figure A.8    True curve (dashed) and estimated curve (solid) with knots 0.15 apart       
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Kernel density estimation
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Explanation 213
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Percentage effects

using logarithms to estimate 79–80
Polynomial regression 125–130
Prais-Winsten transformation 316
Predicted value 17

derivation of the variance of 61
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Predictor variables

Definition 15
linearity condition 155

Price elasticity 80

R

Random error 17
Regression

mathematical definition 16
definition of binary logistic regression 282
definition of multiple linear regression 130
definition of simple linear regression 17
through the origin 40–41

Residual sum of squares (RSS) 17–18, 28
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direct information 155–156
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definition 17, 121, 154
derivation of the variance of 60–61, 154
effects of autocorrelation 324
logistic regression 274–277, 281
matrix formulation 154
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properties for invalid models 49–50, 

155–156
standardized 59, 155
use in checking normality 69–70
weighted least squares 121

Response variable 15
R-squared 30, 136, 273
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S
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autoregressive process of order 1, 

AR(1) 310
benefits of using LS diagnostics based on 

transformed data 324

Cochrane-Orcutt transformation 315
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autocorrelation 322, 324
generalized least squares (GLS) 311–313
log-likelihood function 313
properties of least squares estimates 

for AR(1) errors 311
Prais-Winsten transformation 316
transforming model with AR(1) errors 

into one with iid errors 315–316
transforming GLS into LS 316–317

Shrinkage 3, 337, 339, 341
Spurious correlation

confounding covariate 213
explanation 210
first use of the term 211
observational studies 214–215
omitted variable 213

Standardized residuals
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direct information 155–156
definition 59, 155
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plots 161, 163
properties for valid models 155
properties for invalid models 155–156
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via Q-Q plots 70

T                                                  

Time series plot 306, 307
Transformations

Box-Cox method 89, 91–93, 95–96, 
98–99, 172

Cochrane-Orcutt transformation 315
Inverse response plots 83–89, 169, 171
Important caution 94
Prais-Winsten transformation 316
Use of in overcoming non-constant 

variance 76–79, 112,
Use of in estimating percentage 

effects 79–83, 184
Use of in overcoming non-linearity 

83–102

V

Valid models
Importance for conclusions 1–3
Importance for inference 66, 311
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Akaike’s information criterion 

(AIC) 230–231
Akaike’s information criterion corrected 

(AIC
C
) 231–232

all possible subsets 233–236
backward elimination 236–238
Bayesian information criterion (BIC) 232
choosing knots for regression 

splines 364–365
comparison of AIC, AIC

C
 and 

BIC 232–233
different goals of variable selection and 

prediction 227
effect of influential points 248–249
forward selection 236–238
inference after variable selection 238–239
Kullback-Leibler information measure 230
LARS 251
LASSO 249, 251
leap and bound algorithm 233
model building using the training 

data set 239–247
model comparison using the test 

data set 247–248

over-fitting 227
splitting the data into training and test 

sets 248
stepwise methods 233, 236–237, 362, 

364–365
test data set 239
training data set 239
under-fitting 227

Variance estimate 20
Variance

First order expression based on Taylor 
series 76–77, 112

Variance inflation factors 203

W

Weighted least squares
criterion 115
effect of weights 115
estimates 116
leverage 118–119
prediction intervals 118
residuals 121
use of 121–122
using least squares to calculate 119–121
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